3.Optimization of Bartonella henselae multilocus sequence typing scheme using single-nucleotide polymorphism analysis of SOLiD sequence data.
Fan ZHAO ; Gemma CHALONER ; Alistair DARBY ; Xiu-Ping SONG ; Dong-Mei LI ; Richard BIRTLES ; Qi-Yong LIU
Chinese Medical Journal 2012;125(13):2284-2288
BACKGROUNDMulti-locus sequence typing (MLST) is widely used to explore the population structure of numerous bacterial pathogens. However, for genotypically-restricted pathogens, the sensitivity of MLST is limited by a paucity of variation within selected loci. For Bartonella henselae (B. henselae), although the MLST scheme currently used has been proven useful in defining the overall population structure of the species, its reliability for the accurate delineation of closely-related sequence types, between which allelic variation is usually limited to, at most, one or two nucleotide polymorphisms. Exploitation of high-throughput sequencing data allows a more informed selection of MLST loci and thus, potentially, a means of enhancing the sensitivity of the schemes they comprise.
METHODSWe carried out SOLiD resequencing on 12 representative B. henselae isolates and explored these data using single nucleotide polymorphism (SNP) analysis. We determined the number and distribution of SNPs in the genes targeted by the established MLST scheme and modified the position of loci within these genes to capture as much genetic variation as possible.
RESULTSUsing genome-wide SNP data, we found the distribution of SNPs within each open reading frame (ORF) of MLST loci, which were not represented by the established B. henselae MLST scheme. We then modified the position of loci in the MLST scheme to better reflect the polymorphism in the ORF as a whole. The use of amended loci in this scheme allowed previously indistinguishable ST1 strains to be differentiated. However, the diversity of B. henselae was still rare in China.
CONCLUSIONSOur study demonstrates the use of SNP analysis to facilitate the selection of MLST loci to augment the currently-described scheme for B. henselae. And the diversity among B. henselae strains in China is markedly less than that observed in B. henselae populations elsewhere in the world.
Bartonella henselae ; genetics ; Molecular Sequence Data ; Multilocus Sequence Typing ; methods ; Open Reading Frames ; genetics ; Polymorphism, Single Nucleotide ; genetics
4.Differences in Colistin-resistant Acinetobacter baumannii Clinical Isolates Between Patients With and Without Prior Colistin Treatment.
Yu Jin PARK ; Duck Jin HONG ; Eun Jeong YOON ; Dokyun KIM ; Min Hyuk CHOI ; Jun Sung HONG ; Hyukmin LEE ; Dongeun YONG ; Seok Hoon JEONG
Annals of Laboratory Medicine 2018;38(6):545-554
BACKGROUND: The increasing morbidity and mortality rates associated with Acinetobacter baumannii are due to the emergence of drug resistance and the limited treatment options. We compared characteristics of colistin-resistant Acinetobacter baumannii (CR-AB) clinical isolates recovered from patients with and without prior colistin treatment. We assessed whether prior colistin treatment affects the resistance mechanism of CR-AB isolates, mortality rates, and clinical characteristics. Additionally, a proper method for identifying CR-AB was determined. METHODS: We collected 36 non-duplicate CR-AB clinical isolates resistant to colistin. Antimicrobial susceptibility testing, Sanger sequencing analysis, molecular typing, lipid A structure analysis, and in vitro synergy testing were performed. Eleven colistin-susceptible AB isolates were used as controls. RESULTS: Despite no differences in clinical characteristics between patients with and without prior colistin treatment, resistance-causing genetic mutations were more frequent in isolates from colistin-treated patients. Distinct mutations were overlooked via the Sanger sequencing method, perhaps because of a masking effect by the colistin-susceptible AB subpopulation of CR-AB isolates lacking genetic mutations. However, modified lipid A analysis revealed colistin resistance peaks, despite the population heterogeneity, and peak levels were significantly different between the groups. CONCLUSIONS: Although prior colistin use did not induce clinical or susceptibility differences, we demonstrated that identification of CR-AB by sequencing is insufficient. We propose that population heterogeneity has a masking effect, especially in colistin non-treated patients; therefore, accurate testing methods reflecting physiological alterations of the bacteria, such as phosphoethanolamine-modified lipid A identification by matrix-assisted laser desorption ionization-time of flight, should be employed.
Acinetobacter baumannii*
;
Acinetobacter*
;
Bacteria
;
Colistin*
;
Drug Resistance
;
Humans
;
In Vitro Techniques
;
Lipid A
;
Masks
;
Methods
;
Molecular Typing
;
Mortality
;
Population Characteristics
5.Molecular Typing in Public Health Laboratories: From an Academic Indulgence to an Infection Control Imperative.
Journal of Preventive Medicine and Public Health 2012;45(1):1-7
Using three Austrian case studies, the variegated applications of molecular typing in today's public health laboratories are discussed to help illustrate preventive management strategies relying on DNA subtyping. DNA macrorestriction analysis by pulsed field gel electrophoresis has become the gold standard for subtyping of food borne pathogens like listeria, salmonella, campylobacter and Bacillus cereus. Using a Salmonella Mbandaka outbreak from the year 2010 as example, it is shown how the comparison of patterns from human isolates, food isolates, animal isolates and feed isolates can allow to identify and confirm a source of disease. An epidemiological connection between the simultaneous occurrence of tuberculosis in cattle and deer with cases of human tuberculosis due to Mycobacterium caprae in 2010 was excluded using mycobacterial interspersed repetitive units variable-number tandem repeats subtyping. Also in 2010, multilocus sequence typing with nonselective housekeeping genes, the so-called sequence based typing protocol, was used to elucidate connections between an environmental source (a hospital drinking water system) and a case of legionellosis. During the last decades, molecular typing has evolved to become a routine tool in the daily work of public health laboratories. The challenge is now no longer to simply type microorganisms, but to type them in a way that allows for data exchange between public health laboratories all over the world.
Bacterial Typing Techniques/*methods
;
Clinical Laboratory Techniques/*methods
;
DNA Fingerprinting
;
DNA, Bacterial/*analysis
;
Disease Outbreaks
;
Electrophoresis, Gel, Pulsed-Field/methods
;
Food Microbiology
;
Humans
;
Laboratories
;
Molecular Typing/*methods
;
Preventive Medicine
;
*Public Health
7.Molecular identification of Corni Fructus and its adulterants by ITS/ITS2 sequences.
Dian-Yun HOU ; Jing-Yuan SONG ; Hui YAO ; Jian-Ping HAN ; Xiao-Hui PANG ; Lin-Chun SHI ; Xiao-Chen WANG ; Shi-Lin CHEN
Chinese Journal of Natural Medicines (English Ed.) 2013;11(2):121-127
UNLABELLED:
The DNA barcoding method was used to accurately and rapidly identify Corni Fructus and its adulterants.
METHODS:
Genomic DNA extracted from Corni Fructus and its adulterants were used as templates. The ITS (internal trascribed spacer) regions were amplified using polymerase chain reaction. Sequence assembly was performed using CodonCode Aligner V 3.5.4. Genetic distances were computed using MEGA V 5.0. Species identification was conducted using neighbor-joining (NJ) trees.
RESULTS:
The ITS sequence length of Corni Fructus was 659 bp. The average intra-specific genetic distance of Corni Fructus was 0.005, markedly lower than the inter-specific genetic distance between Corni Fructus and its adulterants (0.357). The ITS2 sequence length of Corni Fructus was 250 bp. No variation was found among the different samples. The interspecific genetic distance of ITS2 between Corni Fructus and its adulterants was 0.571. NJ trees and BLAST results indicated that Corni Fructus and its adulterants can be easily differentiated with monophyly.
CONCLUSION
ITS/ITS2 regions can accurately and efficiently distinguish Corni Fructus and its adulterants. In addition, the results not only established the foundation for the clinical safety in the utilization of Corni Fructus, but also provided reference for molecular identification of other Chinese herbal medicine and Chinese herbal pieces.
Base Sequence
;
Cornus
;
classification
;
genetics
;
DNA, Plant
;
genetics
;
DNA, Ribosomal Spacer
;
genetics
;
Drug Contamination
;
Molecular Sequence Data
;
Molecular Typing
;
methods
;
Phylogeny
;
Species Specificity
8.Serological and molecular capsular typing, antibiotic susceptibility and multilocus sequence typing of Streptococcus pneumoniae isolates from invasive and non-invasive infections.
Yi-Jie ZHANG ; Yu-Shen CHEN ; Zhan-Wei WANG ; Yu-Qian LI ; Da-Xuan WANG ; Ying SHANG ; Rong-Rong FU ; Ying-Hui HU ; Rong GENG ; Li-Ping WEI ; Jing-Ping YANG ; Jia-Shu LI ; Qin YU ; Juan DU ; Zhan-Cheng GAO
Chinese Medical Journal 2013;126(12):2296-2303
BACKGROUNDStreptococcus pneumoniae (S. pneumoniae) is a major causative agent of severe infections, including sepsis, pneumonia, meningitis, and otitis media, and has become a major public health concern. We report the pneumococcal serotype and sequence type (ST) distribution, and antimicrobial resistance of 39 S. pneumoniae strains from seven hospitals in China.
METHODSBlood/cerebrospinal fluid (CSF) and sputum isolates from patients were analyzed to determine S. pneumoniae serotypes by polymerase chain reaction (PCR) and the Neufeld Quellung reaction, the multilocus sequence types (MLST) by PCR and sequencing, and susceptibility to antimicrobial agents by the VITEK Gram Positive Susceptibility Card.
RESULTSA total of 39 isolates were collected including 21 blood/CSF and 18 sputum isolates. Conventional serotyping by the Quellung reaction required 749 reactions. In contrast, PCR based typing needed only 106 PCR reactions. The most frequent serotypes from the blood/CSF isolates were 14 (38.1%), 19A (14.3%), 23F (9.5%), and 18C (9.5%). In the sputum isolates the most frequent serotypes were 19F (33.3%), 23F (16.7%), 19A (11.1%), and 3 (11.1%). The incidence of penicillin resistance in the blood/CSF and sputum isolates was 66.7% and 55.6%, respectively. Statistical analysis showed that patients = 5 years old had a higher resistance to penicillin when they compared with the patients = 65 years old (P = 0.011). Serotypes 14, 19A and 19F were significantly associated with penicillin resistance (P < 0.001). ST320, ST271, and ST876 isolates showed high resistant rates to several antibiotics including penicillin (P = 0.006). All of the isolates of serotype 19A were resistant to both penicillin and erythromycin, and they were all multi-drug resistant (MDR) isolates.
CONCLUSIONSThe specificity and sensitivity of multiplex-PCR are good, and this method represents a substantial savings of time and money, and can be widely used in the laboratory and clinical practice. Data from this research showed an extremely high prevalence of penicillin resistance and an increasing prevalence of multi-drug resistant (MDR) rate in S. pneumoniae. A distinctive emergence of serotype 19A was observed which was also associated with the increasing prevalence of antimicrobial resistance. Therefore, nationwide surveillance of pneumococcal resistance and serotypes is strongly warranted.
Adolescent ; Adult ; Aged ; Child ; Child, Preschool ; Drug Resistance, Multiple, Bacterial ; Humans ; Infant ; Microbial Sensitivity Tests ; Middle Aged ; Molecular Typing ; methods ; Multilocus Sequence Typing ; methods ; Pneumococcal Infections ; microbiology ; Serotyping ; Streptococcus pneumoniae ; classification ; drug effects
9.RT-nPCR Assays for Amplification and Sequencing of VP1 Genes in Human Enterovirus A-D from Clinical Specimens.
Wei CHEN ; Yu Wei WENG ; Wen Xiang HE ; Ying ZHU ; Ting Ting YU ; Jian Feng XIE ; Kui Cheng ZHENG ; Yan Sheng YAN ; Yong Jun ZHANG ; Wen Chang ZHANG
Biomedical and Environmental Sciences 2020;33(11):829-838
Objective:
To develop RT-nPCR assays for amplifying partial and complete VP1 genes of human enteroviruses (HEVs) from clinical samples and to contribute to etiological surveillance of HEV-related diseases.
Methods:
A panel of RT-nPCR assays, consisting of published combined primer pairs for VP1 genes of HEV A-C and in-house designed primers for HEV-D, was established in this study. The sensitivity of each RT-nPCR assay was evaluated with serially diluted virus stocks of five serotypes expressed as CCID
Results:
The sensitivity of RT-nPCR assays for amplifying partial VP1 gene of HEVs was 0.1 CCID
Conclusion
This RT-nPCR system is capable of amplifying the partial and complete VP1 gene of HEV A-D, providing rapid, sensitive, and reliable options for molecular typing and molecular epidemiology of HEVs in clinical specimens.
Capsid Proteins/genetics*
;
Enterovirus A, Human/genetics*
;
Enterovirus B, Human/genetics*
;
Enterovirus C, Human/genetics*
;
Enterovirus D, Human/genetics*
;
Humans
;
Molecular Epidemiology/methods*
;
Molecular Typing/methods*
;
Reverse Transcriptase Polymerase Chain Reaction/methods*
10.Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.
Phyu Win EI ; Wah Wah AUNG ; Jong Seok LEE ; Go Eun CHOI ; Chulhun L CHANG
Journal of Korean Medical Science 2016;31(11):1673-1683
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.
Base Sequence
;
Dermatoglyphics
;
Genome
;
Global Health
;
Methods*
;
Molecular Typing
;
Mycobacterium tuberculosis*
;
Mycobacterium*
;
Polymerase Chain Reaction
;
Polymorphism, Restriction Fragment Length
;
Repetitive Sequences, Nucleic Acid
;
Tandem Repeat Sequences
;
Tuberculosis