1.In silico assessment of the binding of reported bioactive compounds from Phaseolus vulgaris L. (Fabaceae) towards the wild-type and mutant estrogen receptor-alpha
Robertson G. Rivera ; Joanna V. Toralba ; Junie B. Billones
Philippine Journal of Health Research and Development 2022;26(3):11-29
Background:
Breast cancer is one of the leading causes of deaths in women worldwide, affecting nearly 7.8 million people. In 2020 in the Philippines, there were around 150,000 Filipinos who were newly diagnosed with the disease. The complex pathogenesis of breast cancer in addition to the emergence of resistance to therapy makes the treatment very challenging. Compounds that can antagonize the effects of estradiol towards ER-α, especially the mutant Y537S type are sought for.
Objectives:
The focus of this study was the in-silico assessment of the reported secondary metabolites from Phaseolus vulgaris L. (fam. Fabaceae) towards the wild-type and mutant ER-α. Bioisosteric replacement was conducted to generate analogs that can possibly have a comparable binding affinity as estradiol towards estrogen receptors alpha.
Results:
Majority of the secondary metabolites present in Phaseolus vulgaris L. belong to the group of
phytoestrogens, phytosterols, and plant hormones. These groups of compounds exhibited favorable binding energies toward the wild-type and mutant (Y537S) estrogen receptors alpha. Moreover, they bind to the same ligand binding pocket as estradiol, involving similar interactions and amino acid residues.
Conclusion
Compounds from Phaseolus vulgaris L. can potentially target ER-α. Four gibberellin A19 analogs were generated that exhibited favorable binding towards the wild- and mutant- ER-α and may be further optimized to obtain a promisin gcompound against breast cancer.
Breast Neoplasms
;
Molecular Docking Simulation
2.Nucleobase-substituted ponatinib analogues: Molecular docking, short molecular dynamics, and drug-likeness profiling
Vince Lambert H. Padilla ; Glenn V. Alea
Philippine Journal of Health Research and Development 2024;28(2):56-66
Objectives:
This study aims to assess the drug-likeness and binding of nucleobase-substituted ponatinib analogues towards wild-type and T315I mutant BCR-ABL tyrosine kinases.
Methodology:
A total of 415 ponatinib analogues, encompassing single and combinatorial modifications on five parts of the drug
were generated, profiled in SwissADME, and subjected to molecular docking using AutoDock4. Complexes formed by the top
analogues then underwent a 100-ns molecular dynamics simulation with GROMACS.
Results:
Analogues featuring the replacement of the imidazo[1,2b]pyridazine with adenine and cytosine exhibited promising binding
free energies, attributed to the presence of primary amines that facilitate crucial hydrogen bond interactions in the hinge region.
RMSD, RMSF, and atomic distance analyses of the MD trajectories revealed that the six top analogues formed stable complexes in
their inactive DFG-out conformations. Changes in the MMPBSA and MMGBSA-calculated free energies were mainly driven by
changes in hydrogen bonds. Furthermore, drug-likeness predictions supported the formulation of most analogues for oral
administration.
Conclusion
Among the top analogues, VP10004 and VP81014 exhibited the most favorable binding free energies and interactions
with the target models, while VP10312 was identified as the most feasible candidate for synthesis.
Hydrogen Bonding
;
Molecular Dynamics Simulation
;
Molecular Docking Simulation
3.Combined anti-bitterness strategy for extremely bitter characteristics of Andrographis Herba decoction and mechanism.
Qian-Hui ZHANG ; Yin TIAN ; Min QIU ; Xue HAN ; Hong-Yan MA ; Li HAN ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2022;47(20):5424-5433
Three kinds of excipients were selected to investigate the anti-bitterness effect on the extremely bitter characteristics of Andrographis Herba decoction, and the optimal combined anti-bitterness formula was obtained. The preparation principle of different excipients was clarified by virtual screening and experimental verification to explore the advantages of the three kinds of excipients in the combined anti-bitterness effect. Sensory evaluation showed that mPEG_(2000)-PLLA_(2000), γ-cyclodextrin(γ-CD), and aspartame all had good anti-bitterness effect, which reduced the bitterness intensity of Andrographis Herba decoction by 0.5, 6, and 3 points, respectively. The anti-bitterness effect was superior when 0.15% mPEG_(2000)-PLLA_(2000), 1.60% γ-CD, and 0.04% aspartame were combined, and the taste score of the Andrographis Herba decoction decreased from 8 points(severe bitterness) to 1 point(almost no bitterness). Quantum chemistry calculations showed that mPEG_(2000)-PLLA_(2000) reduced the electrostatic potential of bitter groups, which spontaneously combined with it and formed a physical barrier, hindering the binding of bitter components to receptors. The interaction between γ-CD and bitter components was studied. It was found that the surface area and free energy of γ-CD decreased and the dipole moment increased, indicating that γ-CD included bitter components and self-assembled to form supramolecules. Molecular docking showed that hydroxy at position 14 and carbonyl at position 16 of andrographolide, and hydroxy at position 3 and 4, carbonyl at position 14, and five-membered lactone ring of dehydrated andrographolide were possibly the main bitter groups. The binding free energies of aspartame to bitter receptors TAS2 R10, TAS2 R14, and TAS2 R46 were-3.21,-1.55, and-2.52 kcal·mol~(-1), respectively, indicating that aspartame competed to inhibit the binding of bitter groups to bitter receptors. The results of content determination showed that the free amounts of andrographolide and dehydrated andrographolide in Andrographis Herba decoction were 0.23% and 0.28% respectively, while after adding flavor masking excipients, the dissociation amount of andrographolide and dehydrated andrographolide in the decoction decreased to 0.13% and 0.20%, respectively. The above results show that mPEG_(2000)-PLLA_(2000) involves some bitter components into it through micellar self-assembly to reconcile the entrance bitterness, and γ-CD includes the remaining bitter components in the real solution to control the main bitter taste. Aspartame further competes to inhibit the combination of bitter components and bitter receptors, and improves the taste to be sweet. Multi-excipients combined with anti-bitterness strategy significantly reduces the free concentration of bitter substances in Andrographis Herba decoction, and optimizes the taste of the decoction.
Andrographis
;
Taste
;
Aspartame
;
Excipients
;
Molecular Docking Simulation
4.Synthesis, antitubercular activity, and molecular docking studies of Benzyl-modified 8-hydroxyquinolines
Allan Patrick G MACABEO ; Mark Lester M MATHIAS ; Mark Tristan J QUIMQUE ; Kirstin Rhys S PUEBLOS ; Mohd Tajudin MOHD ALI ; Scott G FRANZBLAU
Philippine Journal of Health Research and Development 2019;23(3):1-9
Background: Infection with Mycobacterium tuberculosis, the causative agent of TB, is responsible for one of the global epidemics. Thus, new drugs are needed that do not confer cross-resistance with currently administered front-line therapeutics. Quinoline-based natural products and synthetic derivatives have been extensively explored for antitubercular activity.
Objective: The main goal of this study was to prepare a collection of benzylated 8-hydroxyquinoline derivatives through synthesis and assess their antitubercular activity along with a molecular docking study to clarify their biological mechanism of action.
Methodology: The benzylated 8-hydroxyquinoline derivatives were synthesized using Williamson synthesis methods. Antitubercular activity was assessed against fast replicating M. tuberculosis H??Rv using Microplate Alamar Blue Assay (MABA) and non-replicating cultures using Low-Oxygen Recovery Assay (LORA). Molecular docking studies were carried out against enoyl-acyl carrier protein reductase (InhA).
Results: Five benzylated 8-hydroxyquinoline derivatives were synthesized in moderate yields and characterized using NMR spectroscopy. MABA and LORA assays indicate compounds 3-5 as the most inhibitory derivatives with MIC90's ranging from 6.38 to 54.28 ?M. Molecular docking against InhA showed modest 90 binding energies for compounds 4 (-8.5 kcal/mol) and 5 (-8.6 kcal/mol).
Conclusion: Findings suggest a rationale for the further evolution of this promising series of antitubercular quinoline small molecules. Structure-activity analysis shows that an 8-benzyl moiety with chlorine atom/s is important for improved activity against replicating and non-replicating M. tb. H??Rv. This is also supported by our in silico studies.
Mycobacterium tuberculosis ; Quinolines ; Molecular Docking Simulation
5.Rational design of polyphosphate kinase dual-substrate channel cavity for efficient production of glutathione by cell free catalysis.
Hui GAO ; Qing WANG ; Tingting LIU ; Meijuan XU ; Zhiming RAO
Chinese Journal of Biotechnology 2023;39(8):3318-3335
ATP is an important cofactor involved in many biocatalytic reactions that require energy input. Polyphosphate kinases (PPK) can provide energy for ATP-consuming reactions due to their cheap and readily available substrate polyphosphate. We selected ChPPK from Cytophaga hutchinsonii for substrate profiling and tolerance analysis. By molecular docking and site-directed mutagenesis, we rationally engineered the dual-substrate channel cavity of polyphosphate kinase to improve the catalytic activity of PPK. Compared with the wild type, the relative enzyme activity of the screened mutant ChPPKK81H-K103V increased by 326.7%. Meanwhile, the double mutation expanded the substrate utilization range and tolerance of ChPPK, and improved its heat and alkali resistance. Subsequently, we coupled the glutathione bifunctional enzyme GshAB and ChPPKK81H-K103V based on this ATP regeneration system, and glutathione was produced by cell-free catalysis upon disruption of cells. This system produced (25.4±1.9) mmol/L glutathione in 6 h upon addition of 5 mmol/L ATP. Compared with the system before mutation, glutathione production was increased by 41.9%. After optimizing the buffer, bacterial mass and feeding time of this system, (45.2±1.8) mmol/L glutathione was produced in 6 h and the conversion rate of the substrate l-cysteine was 90.4%. Increasing the ability of ChPPK enzyme to produce ATP can effectively enhance the conversion rate of substrate and reduce the catalytic cost, achieving high yield, high conversion rate and high economic value for glutathione production by cell-free catalysis. This study provides a green and efficient ATP regeneration system that may further power the ATP-consuming biocatalytic reaction platform.
Molecular Docking Simulation
;
Catalysis
;
Glutathione
;
Adenosine Triphosphate
6.Applying network pharmacology and molecular docking in the screening for molecular mechanisms of Ampalaya (Momordica charantia L.) and Banaba (Lagerstroemia speciosa L.) against Type 2 Diabetes Mellitus
Robertson G. Rivera ; Patrick Junard S. Regidor ; Edwin C. Ruamero, Jr. ; Czarina Dominique R. Delos Santos ; Clinton B. Gomez ; Eric John V. Allanigue ; Melanie V. Salinas
Acta Medica Philippina 2024;58(8):108-124
Background and Objectives:
Type 2 diabetes mellitus (T2DM) is a global health concern affecting more than 400 million people worldwide. Diabetic neuropathy, nephropathy, retinopathy, and cardiovascular complications lead to debilitating effects to patients. To prevent these, the treatment goal is to lower the blood sugar levels and maintain at a normal range which is achieved through conventional treatments like insulin and oral hypoglycemic agents. However, the high cost of these medications implicates patient treatment outcomes. Hence, alternatives are sought for including the use of herbal medicines. Momordica charantia (MC) and Lagerstroemia speciosa (LS) are common herbal medicines used to manage T2DM. In the Philippines, these herbal preparations are validated for their glucose lowering effects and are commonly found in combination in food supplements. The study aims to screen the possible mechanisms of compounds present in these herbal medicines which can offer possible explanations for their synergistic effects and rationalization of their combination in preparations.
Methods:
Network pharmacology was employed to determine pivotal proteins that are targeted by MC and LS compounds. Molecular docking was then done to evaluate the favorability of the binding of these compounds toward their target proteins.
Results:
Our results showed that TNF, HSP90AA1, MAPK3, ALDH2, GCK, AKR1B1, TTR and RBP4 are the possible pivotal targets of MC and LS compounds in T2DM.
Conclusion
Terpenoids from MC and decanoic acid from LS are the compounds which showed favorable binding towards pivotal protein targets in T2DM. By binding towards the different key proteins in T2DM, they may exhibit their synergistic effects. However, the results of this study are bound to the limitations of computational methods and experimental validation are needed to verify our findings.
Molecular Docking Simulation
;
Network Pharmacology
;
Momordica charantia
7.Identification of New Potential APE1 Inhibitors by Pharmacophore Modeling and Molecular Docking.
In Won LEE ; Jonghwan YOON ; Gunhee LEE ; Minho LEE
Genomics & Informatics 2017;15(4):147-155
Apurinic/apyrimidinic endonuclease 1 (APE1) is an enzyme responsible for the initial step in the base excision repair pathway and is known to be a potential drug target for treating cancers, because its expression is associated with resistance to DNA-damaging anticancer agents. Although several inhibitors already have been identified, the identification of novel kinds of potential inhibitors of APE1 could provide a seed for the development of improved anticancer drugs. For this purpose, we first classified known inhibitors of APE1. According to the classification, we constructed two distinct pharmacophore models. We screened more than 3 million lead-like compounds using the pharmacophores. Hits that fulfilled the features of the pharmacophore models were identified. In addition to the pharmacophore screen, we carried out molecular docking to prioritize hits. Based on these processes, we ultimately identified 1,338 potential inhibitors of APE1 with predicted binding affinities to the enzyme.
Antineoplastic Agents
;
Classification
;
DNA Repair
;
Molecular Docking Simulation
8.Elucidation of the Inhibitory Effect of Phytochemicals with Kir6.2 Wild-Type and Mutant Models Associated in Type-1 Diabetes through Molecular Docking Approach.
Manaswini JAGADEB ; V Badireenath KONKIMALLA ; Surya Narayan RATH ; Rohit Pritam DAS
Genomics & Informatics 2014;12(4):283-288
Among all serious diseases globally, diabetes (type 1 and type 2) still poses a major challenge to the world population. Several target proteins have been identified, and the etiology causing diabetes has been reasonably well studied. But, there is still a gap in deciding on the choice of a drug, especially when the target is mutated. Mutations in the KCNJ11 gene, encoding the kir6.2 channel, are reported to be associated with congenital hyperinsulinism, having a major impact in causing type 1 diabetes, and due to the lack of its 3D structure, an attempt has been made to predict the structure of kir6.2, applying fold recognition methods. The current work is intended to investigate the affinity of four phytochemicals namely, curcumin (Curcuma longa), genistein (Genista tinctoria), piperine (Piper nigrum), and pterostilbene (Vitis vinifera) in a normal as well as in a mutant kir6.2 model by adopting a molecular docking methodology. The phytochemicals were docked in both wild and mutated kir6.2 models in two rounds: blind docking followed by ATP-binding pocket-specific docking. From the binding pockets, the common interacting amino acid residues participating strongly within the binding pocket were identified and compared. From the study, we conclude that these phytochemicals have strong affinity in both the normal and mutant kir6.2 model. This work would be helpful for further study of the phytochemicals above for the treatment of type 1 diabetes by targeting the kir6.2 channel.
Congenital Hyperinsulinism
;
Curcumin
;
Diabetes Mellitus
;
Genistein
;
Molecular Docking Simulation
;
Phytochemicals*
9.Potential molecular mechanism of Banxia Xiexin Decoction in treatment of colon cancer based on network pharmacology and molecular docking technology.
Yu-Ting LUO ; Long-Fei LIN ; Yu-Ling LIU ; Guo-Lin SHI ; Yan-Qiu WU ; An-Hui YANG ; Hui LI
China Journal of Chinese Materia Medica 2020;45(23):5753-5761
The aim of this paper was to explore the potential molecular mechanism of Banxia Xiexin Decoction in the treatment of colon cancer through pharmacology network and molecular docking methods. The chemical constituents and action targets of 7 herbs from Banxia Xiexin Decoction were collected by using TCMSP database,Chinese Pharmacopoeia and literatures consultation. GeneCards database was used to predict the potential targets of colon cancer. GO biological process analysis and KEGG pathway enrichment analysis of the disease and drug intersection targets were carried out through DAVID database. "Component-target-pathway" network and protein-protein interaction(PPI) network were construction by using Cytoscape and STRING database,and then the core components and targets of Banxia Xiexin Decoction in the treatment of colon cancer were selected according to the topological parameters. Finally, Autodock Vina was used to realize the molecular docking of core components and key targets. The prediction results showed that there were 190 active compounds and 324 corresponding targets for Banxia Xiexin Decoction,involving 74 potential targets for colon cancer. Cytoscape topology analysis revealed 11 key targets such as STAT3,TP53,AKT1,TNF,IL6 and SRC, as well as 10 core components such as quercetin,β-sitosterol,baicalein,berberine,and 6-gingerol.In bioinformatics enrichment analysis, 679 GO terms and 106 KEGG pathways were obtained, mainly involving PI3 K-AKT signaling pathway,TNF signaling pathway and TP53 signaling pathway. The results of molecular docking showed that baicalein,berberine,licochalcone A and 6-gingerol had a high affinity with SRC,STAT3,TNF and IL6. The results suggested that Banxia Xiexin Decoction could play an anti-colon cancer effect by inhibiting cell proliferation, regulating cell cycle, inducing apoptosis and anti-inflammatory function. The study revealed the multi-components,multi-targets and multi-pathways molecular mechanism of Banxia Xiexin Decoction,which could provide scientific basis and research ideas for the clinical application of Banxia Xiexin Decoction and the treatment of colon cancer with compound Chinese medicines.
Colonic Neoplasms
;
Drugs, Chinese Herbal
;
Humans
;
Molecular Docking Simulation
;
Technology
10.Virtual screening study of cathepsin S natural inhibitor.
Yu GAO ; Jie SHEN ; Hai-Bo LIU
China Journal of Chinese Materia Medica 2019;44(6):1201-1207
Cathepsin S is a cysteine protease which is closely related to autoimmune diseases,psoriasis and other diseases. In this study,we used virtual screening method to screen compounds,which from the natural product library of traditional Chinese medicine,with potential inhibitory effect on cathepsin S. The work involved in study on inhibitory mechanism of representative compounds,then analysis of the distribution of these compounds in traditional Chinese medicine and the correlation with disease,so as to provide a new drug research and data-base for cathepsin S. The complex crystal structure of cathepsin S,2FQ9,was used to establish the pharmacophore model of cathepsin S inhibitor,and the best pharmacophore model was selected. As a result,fifty compounds were selected from TCMD database. After molecular docking,65 potential inhibitors were identified. Potential inhibitors can produce multiple intermolecular interactions with targets,resulting in inhibition. There are 58 kinds of traditional Chinese medicines which include 65 natural inhibitors. Data collection and analysis of the nature,flavor xing,channel entry and modern pharmacological effects of these traditional Chinese medicines showed that most of them were related to the biological activity of cathepsin S,which supported the validity of the screening results. Cathepsin S has a certain correlation with autoimmune diseases and can be used as a target for further study of traditional Chinese medicine.
Cathepsins
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional
;
Molecular Docking Simulation