1. Determining endemic values of cutaneous leishmaniasis in Iranian Fars province by retrospectively detected clusters and receiver operating characteristic curve analysis
Marjan ZARE ; Abbas REZAIANZADEH ; Hamidreza TABATABAEE ; Hossain FARAMARZI ; Mohsen ALIAKBARPOUR ; Mostafa EBRAHIMI
Asian Pacific Journal of Tropical Biomedicine 2019;9(9):359-364
Objective: To determine the endemic values of cutaneous leishmaniasis in different cities of Fars province, Iran. Methods: Totally, 29 201 cases registered from 2010 to 2015 in Iranian Fars province were selected, and the endemic values of cutaneous leishmaniasis were determined by retrospective clusters derived from spatiotemporal permutation modeling on a time-series design. The accuracy of the values was assessed using receiver operating characteristic (ROC) curve. SPSS version 22, ArcGIS, and ITSM 2002 software tools were used for analysis. Results: Nine statistically significant retrospective clusters (P<0.05) resulted in finding seven significant and accurate endemic values (P<0.1). These valid endemic scores were generalized to the other 18 cities based on 6 different climates in the province. Conclusions: Retrospectively detected clusters with the help of ROC curve analysis could help determine cutaneous leishmaniasis endemic values which are essential for future prediction and prevention policies in the area.
2. Establishment of an early warning system for cutaneous leishmaniasis in Fars province, Iran
Marjan ZARE ; Abbas REZAIANZADEH ; Hamidreza TABATABAEE ; Hossain FARAMARZI ; Mohsen ALIAKBARPOUR ; Mostafa EBRAHIMI
Asian Pacific Journal of Tropical Biomedicine 2019;9(6):232-239
Objective: To establish an early warning system for cutaneous leishmaniasis in Fars province, Iran in 2016. Methods: Time-series data were recorded from 29 201 cutaneous leishmaniasis cases in 25 cities of Fars province from 2010 to 2015 and were used to fit and predict the cases using time-series models. Different models were compared via Akaike information criterion/Bayesian information criterion statistics, residual analysis, autocorrelation function, and partial autocorrelation function sample/model. To decide on an outbreak, four endemic scores were evaluated including mean, median, mean + 2 standard deviations, and median + interquartile range of the past five years. Patients whose symptoms of cutaneous leishmaniasis began from 1 January 2010 to 31 December 2015 were included, and there were no exclusion criteria. Results: Regarding four statistically significant endemic values, four different cutaneous leishmaniasis space-time outbreaks were detected in 2016. The accuracy of all four endemic values was statistically significant (P<0.05). Conclusions: This study presents a protocol to set early warning systems regarding time and space features of cutaneous leishmaniasis in four steps: (i) to define endemic values based on which we could verify if there is an outbreak, (ii) to set different time-series models to forecast cutaneous leishmaniasis in future, (iii) to compare the forecasts with endemic values and decide on space-time outbreaks, and (iv) to set an alarm to health managers.