1.Production and Evaluation of Toxoplasma gondii Recombinant GRA7 for Serodiagnosis of Human Infections.
Mina SELSELEH ; Hossein KESHAVARZ ; Mehdi MOHEBALI ; Saeedeh SHOJAEE ; Monavar SELSELEH ; Mohammad Reza ESHRAGIAN ; Fatemeh MANSOURI ; Mohammad Hossein MODARRESSI
The Korean Journal of Parasitology 2012;50(3):233-238
The precise diagnosis of the acute toxoplasmosis in pregnant women and immunocompromsied patients has critical importance. Most of the commercially available assays use the whole Toxoplasma soluble extract as the antigen. However, the assays currently available for the detection of specific anti-Toxoplasma antibodies may vary in their abilities to detect serum immunoglobulins, due to the lack of a purified standardized antigen. The aim of this study was production and evaluation of the usefulness of the recombinant Toxoplasma gondii GRA7 antigen for the serodiagnosis of Toxoplasma gondii IgM and IgG by ELISA. A total of 70 T. gondii IgM positive sera, 74 T. gondii IgG positive sera, and 60 sera from subjects who were not infected with T. gondii were examined. These sera were shown different absorbance values in ELISA test. To control the specificity of the rGRA7 other parasitic diseases, for example, echinococcosis, malaria, leishmaniasis, fascioliasis, and strongyloidiasis were tested of which none showed positive results. Sensitivity and specificity of the generated recombinant IgG ELISA in comparison with commercial ELISA (com ELISA) were 89% and 90%, and the sensitivity and specificity of the generated recombinant IgM ELISA were 96% and 90%, respectively. The results obtained here show that this antigen is useful for diagnostic purposes.
Antibodies, Protozoan/*blood
;
Antigens, Protozoan/*diagnostic use/genetics/*isolation & purification
;
Enzyme-Linked Immunosorbent Assay/methods
;
Female
;
Humans
;
Immunoglobulin G/blood
;
Immunoglobulin M/blood
;
Protozoan Proteins/*diagnostic use/genetics/*isolation & purification
;
Recombinant Proteins/diagnostic use/genetics/isolation & purification
;
Sensitivity and Specificity
;
Toxoplasma/*immunology
;
Toxoplasmosis/*diagnosis
2.Real-Time RT-PCR on SAG1 and BAG1 Gene Expression during Stage Conversion in Immunosuppressed Mice Infected with Toxoplasma gondii Tehran Strain.
Monavar SELSELEH ; Mohammad Hossein MODARRESSI ; Mehdi MOHEBALI ; Saeedeh SHOJAEE ; Mohammad Reza ESHRAGIAN ; Mina SELSELEH ; Ebrahim AZIZI ; Hossein KESHAVARZ
The Korean Journal of Parasitology 2012;50(3):199-205
Toxoplasmic encephalitis is caused by reactivation of bradyzoites to rapidly dividing tachyzoites of the apicomplexan parasite Toxoplasma gondii in immunocompromised hosts. Diagnosis of this life-threatening disease is problematic, because it is difficult to discriminate between these 2 stages. Toxoplasma PCR assays using gDNA as a template have been unable to discriminate between an increase or decrease in SAG1 and BAG1 expression between the active tachyzoite stage and the latent bradyzoite stage. In the present study, real-time RT-PCR assay was used to detect the expression of bradyzoite (BAG1)- and tachyzoite-specific genes (SAG1) during bradyzoite/tachyzoite stage conversion in mice infected with T. gondii Tehran strain after dexamethasone sodium phosphate (DXM) administration. The conversion reaction was observed in the lungs and brain tissues of experimental mice, indicated by SAG1 expression at day 6 after DXM administration, and continued until day 14. Bradyzoites were also detected in both organs throughout the study; however, it decreased at day 14 significantly. It is suggested that during the reactivation period, bradyzoites not only escape from the cysts and reinvade neighboring cells as tachyzoites, but also converted to new bradyzoites. In summary, the real-time RT-PCR assay provided a reliable, fast, and quantitative way of detecting T. gondii reactivation in an animal model. Thus, this method may be useful for diagnosing stage conversion in clinical specimens of immunocompromised patients (HIV or transplant patients) for early identification of tachyzoite-bradyzoite stage conversion.
Animals
;
Antigens, Protozoan/*biosynthesis
;
Brain/parasitology
;
Female
;
*Gene Expression
;
Heat-Shock Proteins/*biosynthesis
;
Immunocompromised Host
;
Life Cycle Stages
;
Lung/parasitology
;
Mice
;
Protozoan Proteins/*biosynthesis
;
Real-Time Polymerase Chain Reaction
;
Toxoplasma/*genetics/physiology
;
Toxoplasmosis, Animal