1.MiR-4492, a New Potential MicroRNA for Cancer Diagnosis and Treatment: A Mini Review
Aida ALIZAMIR ; Mohammad Amin AMINI ; Ashkan KARBASI ; Mehdi BEYRAMI
Chonnam Medical Journal 2024;60(1):21-26
There is no doubt that the incidence of cancer sufferers is rising in the world, and it is estimated that in the next several decades, the number of people suffering from malignancies or the cancer rate will double. Diagnostic and therapeutic targeting of noncoding RNAs (ncRNAs), especially microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represent an excellent approach for cancer diagnosis and treatment, as well as many other diseases. One of the latest miRNAs is miR-4492, upregulating some genes in tumor tissues including ROMO1, HLA-G, NKIRAS2, FOXK1, and UBE2C.It represents an attractant example of a miRNA acting at multiple levels to affect the same malignancy hallmark. Based on the studies, miR-4492 plays a key role in several cancers such as, breast cancer, bladder cancer, osteosarcoma, glioblastoma multiforme, hepatocellular carcinoma, colorectal cancer, and ovarian cancer. Putting it all together, identifying the precise mechanisms of miR-4492 in the pathogenesis of cancer, could pave the way to find better diagnostic and therapeutic strategies for cancer sufferers. For this reason, it might be a novel potential diagnostic biomarker and therapeutic target for neoplasms.
2.Mechanistic Insight into Age-Related Macular Degeneration (AMD):Anatomy, Epidemiology, Genetics, Pathogenesis, Prevention, Implications, and Treatment Strategies to Pace AMD Management
Mohammad Amin AMINI ; Ashkan KARBASI ; Mohammad VAHABIRAD ; Masoud KHANAGHAEI ; Aida ALIZAMIR
Chonnam Medical Journal 2023;59(3):143-159
One of the most complicated eye disorders is age-related macular degeneration (AMD) which is the leading cause of irremediable blindness all over the world in the elderly.AMD is classified as early stage to late stage (advanced AMD), in which this stage is divided into the exudative or neovascular form (wet AMD) and the nonexudative or atrophic form (dry AMD). Clinically, AMD primarily influences the central area of retina known as the macula. Importantly, the wet form is generally associated with more severe vision loss. AMD has a systemic component, where many factors, like aging, genetic, environment, autoimmune and non-autoimmune disorders are associated with this disease. Additionally, healthy lifestyles, regular exercise, maintaining a normal lipid profile and weight are crucial to decreasing the risk of AMD. Furthermore, therapeutic strategies for limiting AMD should encompass a variety of factors to avoid and improve drug interventions, and also need to take into account personalized genetic information. In conclusion, with the development of technology and research progress, visual impairment and legal blindness from AMD have been substantially reduced in incidence. This review article is focused on identifying and developing the knowledge about the association between genetics, and etiology with AMD. We hope that this review will encourage researchers and lecturers, open new discussions, and contribute to a better understanding of AMD that improves patients’ visual acuity, and upgrades the quality of life of AMD patients.
3.Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment
Mohammad Amin AMINI ; Seyed Saman TALEBI ; Jamshid KARIMI
Chonnam Medical Journal 2019;55(3):136-143
Today, the incidence of cancer in the world is rising, and it is expected that in the next several decades, the number of people suffering from cancer or (the cancer rate) will double. Cancer is defined as the excessive and uncontrolled growth of cells; of course (in simple terms), cancer is considered to be a set of other diseases that ultimately causes normal cells to be transformed into neoplastic cells. One of the most important causes of the onset and exacerbation of cancer is excessive oxidative stress. One of the most important proteins in the inner membrane of mitochondria is Reactive Oxygen Species (ROS) Modulator 1 (ROMO1) that interferes with the production of ROS, and with increasing the rate of this protein, oxidative stress will increase, which ultimately leads to some diseases, especially cancer. In this overview, we use some global databases to provide information about ROMO1 cellular signaling pathways, their related proteins and molecules, and some of the diseases associated with the mitochondrial protein, especially cancer.
Diagnosis
;
Incidence
;
Membranes
;
Mitochondria
;
Mitochondrial Proteins
;
Oxidative Stress
;
Reactive Oxygen Species
4.The Association of Oxidative Stress and Reactive Oxygen Species Modulator 1 (ROMO1) with Infertility: A Mini Review
Mohammad Amin AMINI ; Masoud KARIMI ; Seyed Saman TALEBI ; Hossein PIRI ; Jamshid KARIMI
Chonnam Medical Journal 2022;58(3):91-95
Infertility is one of the disorders that worries many couples around the world, although novel and molecular methods can be used to cure this disease in different stages. One of the factors that causes infertility in men and women is the increased oxidative stress within the cells, which can lead to damage in zygote formation. ROMO1 is one of the most important proteins in the production of reactive oxygen species. This protein can enhance oxidative stress in the cells and body through cellular pathways, such as TNF-α and NF-κB routes, which will eventually lead to many diseases, especially infertility. We engage several international databases by using keywords; ROMO1, Infertility, and Reactive Oxygen Species, and gained a great quantity of information about ROMO1, Infertility, and Oxidative Stress. Although not proven, it is hypothesized that ROMO1 might elevate oxidative stress by activating NF-κB pathway in the cells, furthermore, TNF-αcan arouse ROMO1 that can end up with apoptosis and cell death, which consequently can have a lot of disturbing effects on the body, especially the reproductive system. To sum up, revealing the exact cellular and molecular mechanisms of ROMO1-dependent TNF-α and NF-κB pathways in the pathogenesis of infertility might find interesting therapeutic and management strategies for this disorder.
5.The Association of COVID-19 and Reactive Oxygen Species Modulator 1 (ROMO1) with Oxidative Stress
Mohammad Amin AMINI ; Jamshid KARIMI ; Seyed Saman TALEBI ; Hosein PIRI
Chonnam Medical Journal 2022;58(1):1-5
There is no denying that the massive spread of COVID-19 around the world has worried everyone. The virus can cause mild to severe symptoms in various organs, especially the lungs. The virus affects oxidative stress in the cells. Reactive Oxygen Species modulator 1 (ROMO1) is one of the most important mitochondrial proteins that plays a critical regulatory role in the production of Reactive Oxygen Species (ROS). According to the studies, COVID-19 can promote oxidative stress through some important pathways, for instance, TNF-α and NF-κB routes. Furthermore, ROMO1 is closely related to these pathways and its dysfunction may affect these routes, then promote oxidative stress, and ultimately cause tissue damage, especially in the lungs. Another factor to consider is that the TNF-α and NF-κB pathways are associated with ROMO1, COVID-19, and oxidative stress. To summarize, it is hypothesized that COVID-19 may increase oxidative stress by affecting ROMO1. Understanding the exact molecular mechanisms of ROMO1 in the pathogenesis of COVID-19 can pave the way to find better therapeutic strategies.
6.Overexpression of miR-146a and miR-155 are Potentially Biomarkers and Predict Unfavorable Relationship between Gastric Cancer and Helicobacter pylori Infection
Masoud KARIMI ; Abdolreza MOHAMMADNIA ; Mohammad Amin AMINI ; Azar Ghavimi SHAMEKH ; Elahe DERAKHSHANFAR ; Farzaneh HOSSEINI
Chonnam Medical Journal 2023;59(3):167-173
Gastric Cancer (GC) is one of the most dangerous malignancies in the world. This study aims to evaluate the relationship between miR-146a and miR-155 in patients with H. pylori infections with GC compared to H. pylori-infected patients and healthy subjects. Forty patients with H. pylori and GC positive diagnoses and 40 patients with H. pylori positive and GC negative diagnoses, and 40 healthy persons were selected.The expression of miR-146a and miR-155 genes in the whole blood was examined using qRT-PCR. Moreover, ROC curves were drawn to represent the sensitivity and specificity of miR-146a and miR-155 expression as biomarkers. The results showed the expression of miR-146a and miR-155 in the whole blood of patients with H. pylori and GC positive diagnoses are significantly higher than in healthy individuals and are non-significantly enhanced compared to H. pylori positive and GC negative. Also, the results stated miR-146a and miR-155 expression in the whole blood of patients who are H. pylori positive and GC negative are significantly increased compared to healthy individuals. Furthermore, the ROC curve analysis of miR-146a and miR-155 RNA level demonstrated the two miRNAs have an appropriate sensitivity and specificity for diagnostic goals. In conclusion, H. pylori infection may increase the expression of miR-146a and miR-155 in patients with H. pylori and GC positive diagnoses, which can be effective in the curbing the progression of GC. For this reason, up-regulation of miR-146a and miR-155 along with H. pylori infection might contribute to the pathogenesis of GC, and also can be suggested as biomarkers for GC diagnosis and treatment.
7. Ivermectin as an adjunct treatment for hospitalized adult COVID-19 patients: A randomized multi-center clinical trial
Morteza SHAKHSI NIAEE ; Fatemeh CHERAGHI ; Peyman NAMDAR ; Abbas ALLAMI ; Amin KARAMPOUR ; Leila ZOLGHADR ; Amir JAVADI ; Mehran VARNASERI ; Masoumeh KARAMYAN ; Mohammad YADYAD ; Ramin JAMSHIDIAN ; Behzad BIJANI ; Yazdan NADERI ; Nematollah GHEIBI ; Fatemeh AMINI
Asian Pacific Journal of Tropical Medicine 2021;14(6):266-273
Objective: To evaluate different doses of ivermectin in adult patients with mild COVID-19 and to evaluate the effect of ivermectin on mortality and clinical consequences. Methods: A randomized, double-blind, placebo-controlled, multicenter clinical trial was performed at five hospitals. A total of 180 mild hospitalized patients with COVID-19 confirmed by PCR or chest image tests were enrolled and allocated to six arms including hydroxychloroquine 200 mg twice per day, placebo plus hydroxychloroquine 200 mg twice per day, single dose ivermectin (200 μg/kg), three low interval doses of ivermectin (200, 200, 200 μg/kg), single dose ivermectin (400 μg/kg), and three high interval doses of ivermectin (400, 200, 200 μg/kg). The primary endpoint of this trial was all-cause of mortality or clinical recovery. The radiographic findings, hospitalization and low O