1.Low Levels of Extensively Drug-resistant Tuberculosis among Multidrug Resistant Tuberculosis Isolates and Their Relationship to Risk Factors: Surveillance in Tehran, Iran; 2006 to 2014.
Alireza Hadizadeh TASBITI ; Shamsi YARI ; Mostafa GHANEI ; Mohammad Ali SHOKRGOZAR ; Abolfazl FATEH ; Ahmadreza BAHRMAND
Osong Public Health and Research Perspectives 2017;8(2):116-123
OBJECTIVES: Extensively drug-resistant tuberculosis (XDR-TB) is more expensive and difficult to treat than multidrug-resistant tuberculosis (MDR-TB), and outcomes for patients are much worse; therefore, it is important that clinicians understand the magnitude and distribution of XDR-TB. We conducted a retrospective study to compare the estimated incidence of and risk factors for M/XDR-TB with those of susceptible TB controls. METHODS: Sputum culture and drug susceptibility testing (DST) were performed in patients with known or suspected TB. Strains that were identified as MDR were subjected to DST for second-line drugs using the proportion method. RESULTS: Among 1,442 TB patients (mean age, 46.48 ± 21.24 years) who were culture-positive for Mycobacterium tuberculosis, 1,126 (78.1%) yielded isolates that were resistant to at least one first-line drug; there were 33 isolates (2.3%) of MDR-TB, of which three (0.2%) were classified as XDR-TB. Ofloxacin resistance was found in 10 (0.7%) isolates. Women were 15% more likely than men to yield M/XDR-TB isolates, but this difference was not significant. In a multivariate analysis comparing susceptible TB with X/MDR-TB, only one variable—the number of previous treatment regimens—was associated with MDR (odds ratio, 1.06; 95% confidence interval, 1.14–21.2). CONCLUSION: The burden of M/XDR-TB cases is not sizeable in Iran. Nonetheless, strategies must be implemented to identify and cure patients with pre-XDR-TB before they develop XDR-TB. Our results provide a greater understanding of the evolution and spread of M/XDR-TB in an environment where drug-resistant TB has a low incidence.
Extensively Drug-Resistant Tuberculosis*
;
Female
;
Humans
;
Incidence
;
Iran*
;
Male
;
Methods
;
Multivariate Analysis
;
Mycobacterium tuberculosis
;
Ofloxacin
;
Retrospective Studies
;
Risk Factors*
;
Sputum
;
Tuberculosis*
;
Tuberculosis, Multidrug-Resistant
2.Cyclic Stretch Effects on Adipose-Derived Stem Cell Stiffness, Morphology and Smooth Muscle Cell Gene Expression.
Mohsen RABBANI ; Mohammad TAFAZZOLI-SHADPOUR ; Mohammad Ali SHOKRGOZAR ; Mohsen JANMALEKI ; Morteza TEYMOORI
Tissue Engineering and Regenerative Medicine 2017;14(3):279-286
Recent investigations consider adipose-derived stemcells (ASCs) as a promising source of stemcells for clinical therapies. To obtain functional cells with enhanced cytoskeleton and aligned structure, mechanical stimuli are utilized during differentiation of stem cells to the target cells. Since function of muscle cells is associated with cytoskeleton, enhanced structure is especially essential for these cells when employed in tissue engineering. In this study by utilizing a custom-made device, effects of uniaxial tension (1Hz, 10% stretch) on cytoskeleton, cell alignment, cell elastic properties, and expression of smooth muscle cell (SMC) genes in ASCs are investigated.Due to proper availability ofASCs, results can be employed in cardiovascular engineeringwhen production of functional SMCs in arterial reconstruction is required. Results demonstrated that cells were oriented after 24 hours of cyclic stretch with aligned pseudo-podia. Staining of actin filaments confirmed enhanced polymerization and alignment of stress fibers. Such phenomenon resulted in stiffening of cell body which was quantified by atomic force microscopy (AFM). Expression of SM α-actin and SM22 α-actin as SMC associated genes were increased after cyclic stretch while GAPDH was considered as internal control gene. Finally, it was concluded that application of cyclic stretch on ASCs assists differentiation to SMC and enhances functionality of cells.
Actin Cytoskeleton
;
Cell Body
;
Cytoskeleton
;
Microscopy, Atomic Force
;
Muscle Cells
;
Muscle, Smooth*
;
Myocytes, Smooth Muscle*
;
Polymerization
;
Polymers
;
Stem Cells*
;
Stress Fibers
;
Tissue Engineering