1.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
2.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
3.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.
4.Exploring the therapeutic potential:Apelin-13’s neuroprotective effects foster sustained functional motor recovery in a rat model of Huntington’s disease
Shaysteh TORKAMANI-DORDSHAIKH ; Shahram DARABI ; Mohsen NOROUZIAN ; Reza BAHAR ; Amirreza BEIRAMI ; Meysam Hassani MOGHADDAM ; Mobina FATHI ; Kimia VAKILI ; Foozhan TAHMASEBINIA ; Maryam BAHRAMI ; Hojjat Allah ABBASZADEH ; Abbas ALIAGHAEI
Anatomy & Cell Biology 2024;57(3):419-430
Huntington’s disease (HD) is a hereditary condition considered by the progressive degeneration of nerve cells in the brain, resultant in motor dysfunction and cognitive impairment. Despite current treatment modalities including pharmaceuticals and various therapies, a definitive cure remains elusive. Therefore, this study investigates the therapeutic potential effect of Apelin-13 in HD management. Thirty male Wistar rats were allocated into three groups: a control group, a group with HD, and a group with both HD and administered Apelin-13. Apelin-13 was administered continuously over a 28-day period at a dosage of around 30 mg/kg to mitigate inflammation in rats subjected to 3-NP injection within an experimental HD model. Behavioral tests, such as rotarod, electromyography (EMG), elevated plus maze, and open field assessments, demonstrated that Apelin-13 improved motor function and coordination in rats injected with 3-NP.Apelin-13 treatment significantly increased neuronal density and decreased glial cell counts compared to the control group.Immunohistochemistry analysis revealed reduced gliosis and expression of inflammatory factors in the treatment group.Moreover, Apelin-13 administration led to elevated levels of glutathione and reduced reactive oxygen species (ROS) level in the treated group. Apelin-13 demonstrates neuroprotective effects, leading to improved movement and reduced inflammatory and fibrotic factors in the HD model.