1.Immune-Checkpoint Inhibitors in the Era of Precision Medicine: What Radiologists Should Know.
Marta BRASCHI-AMIRFARZAN ; Sree Harsha TIRUMANI ; Frank Stephen Jr HODI ; Mizuki NISHINO
Korean Journal of Radiology 2017;18(1):42-53
Over the past five years immune-checkpoint inhibitors have dramatically changed the therapeutic landscape of advanced solid and hematologic malignancies. The currently approved immune-checkpoint inhibitors include antibodies to cytotoxic T-lymphocyte antigen-4, programmed cell death (PD-1), and programmed cell death ligand (PD-L1 and PD-L2). Response to immune-checkpoint inhibitors is evaluated on imaging using the immune-related response criteria. Activation of immune system results in a unique toxicity profile termed immune-related adverse events. This article will review the molecular mechanism, clinical applications, imaging of immune-related response patterns and adverse events associated with immune-checkpoint inhibitors.
Antibodies
;
Cell Death
;
Hematologic Neoplasms
;
Immune System
;
Precision Medicine*
;
T-Lymphocytes, Cytotoxic
2.Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications
Akinori HATA ; Yoshitake YAMADA ; Rie TANAKA ; Mizuki NISHINO ; Tomoyuki HIDA ; Takuya HINO ; Masako UEYAMA ; Masahiro YANAGAWA ; Takeshi KAMITANI ; Atsuko KUROSAKI ; Shigeru SANADA ; Masahiro JINZAKI ; Kousei ISHIGAMI ; Noriyuki TOMIYAMA ; Hiroshi HONDA ; Shoji KUDOH ; Hiroto HATABU
Korean Journal of Radiology 2021;22(4):634-651
Dynamic X-ray (DXR) is a functional imaging technique that uses sequential images obtained by a flat-panel detector (FPD).This article aims to describe the mechanism of DXR and the analysis methods used as well as review the clinical evidence for its use. DXR analyzes dynamic changes on the basis of X-ray translucency and can be used for analysis of diaphragmatic kinetics, ventilation, and lung perfusion. It offers many advantages such as a high temporal resolution and flexibility in body positioning. Many clinical studies have reported the feasibility of DXR and its characteristic findings in pulmonary diseases. DXR may serve as an alternative to pulmonary function tests in patients requiring contact inhibition, including patients with suspected or confirmed coronavirus disease 2019 or other infectious diseases. Thus, DXR has a great potential to play an important role in the clinical setting. Further investigations are needed to utilize DXR more effectively and to establish it as a valuable diagnostic tool.
3.Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications
Akinori HATA ; Yoshitake YAMADA ; Rie TANAKA ; Mizuki NISHINO ; Tomoyuki HIDA ; Takuya HINO ; Masako UEYAMA ; Masahiro YANAGAWA ; Takeshi KAMITANI ; Atsuko KUROSAKI ; Shigeru SANADA ; Masahiro JINZAKI ; Kousei ISHIGAMI ; Noriyuki TOMIYAMA ; Hiroshi HONDA ; Shoji KUDOH ; Hiroto HATABU
Korean Journal of Radiology 2021;22(4):634-651
Dynamic X-ray (DXR) is a functional imaging technique that uses sequential images obtained by a flat-panel detector (FPD).This article aims to describe the mechanism of DXR and the analysis methods used as well as review the clinical evidence for its use. DXR analyzes dynamic changes on the basis of X-ray translucency and can be used for analysis of diaphragmatic kinetics, ventilation, and lung perfusion. It offers many advantages such as a high temporal resolution and flexibility in body positioning. Many clinical studies have reported the feasibility of DXR and its characteristic findings in pulmonary diseases. DXR may serve as an alternative to pulmonary function tests in patients requiring contact inhibition, including patients with suspected or confirmed coronavirus disease 2019 or other infectious diseases. Thus, DXR has a great potential to play an important role in the clinical setting. Further investigations are needed to utilize DXR more effectively and to establish it as a valuable diagnostic tool.