2.Effects of combination of dihydroartemisinin and Huobahua on expression of p-p38 MAPK and ICAM-1 in mice with delayed-type hypersensitivity.
Min-Xia ZHAN ; Du WEI ; Li HENG-HUA ; Jin-Ping LUO ; Xiao-Li MEI ; Tu RU-XIA ; Li ZHANG
China Journal of Chinese Materia Medica 2020;45(22):5561-5566
The aim of this paper was to investigate the immunosuppressive effects of dihydroartemisinin and Huobahua compatibility in mice with delayed hypersensitivity and explore its possible mechanism. The delayed-type hypersensitivity(DTH) model in mice was established to observe the immunosuppressive effects of dihydroartemisinin and Huobahua compatibility in DTH mice. ELISA assay was used to detect the contents of interferon(IFN-γ); histopathological changes and degree of mononuclear infiltration of right ear tissues were examined by HE staining; the expression level of intercellular cell adhesion molecule-1(ICAM-1) in the right ear of mice was detected by immunohistochemistry; the protein expression levels of p38 phospho mitogen activated protein kinase(p-p38 MAPK) was detected by Western blot analysis. As compared with the control group, the degree of ear swelling, thymus/spleen index, serum IFN-γ as well as the number and degree of infiltration of monocytes were significantly increased in the model group. As compared with the model group, the degree of ear swelling and thymus/spleen index of the mice in the combination group were significantly reduced; the number and degree of infiltration of monocytes were significantly relieved; the serum levels of IFN-γ and the expression levels of p-p38 MAPK and ICAM-1 proteins in the right ear were also significantly reduced. The combination of dihydroartemisinin and Huobahua can significantly inhibit the DTH response, and it may regulate the production and secretion of related inflammatory factor IFN-γ by inhibiting the phosphorylation activity of p38 MAPK, thereby further reducing the expression of ICAM-1 and thus exerting the immunosuppressive effect.
Animals
;
Artemisinins
;
Intercellular Adhesion Molecule-1/genetics*
;
Mice
;
Monocytes
;
p38 Mitogen-Activated Protein Kinases/genetics*
3.Gene profiling of MAPK pathway in human osteosarcoma.
Guo-dong LI ; Zheng-dong CAI ; Yin-quan ZHANG ; Hai-yang GONG ; Hao TANG ; Qiu-lin ZHANG
Chinese Journal of Oncology 2009;31(5):340-345
OBJECTIVETo explore the functional effects of MAPK pathway in the pathogenesis of human osteosarcoma.
METHODSGene microarray (Human Genome U133A, Affymetrix) was used to screen the differential expression of genes involved in MAPK pathway between osteosarcoma cell lines and 3 osteoblastic cell lines. KEGG metabolic pathway analysis was performed among significantly increased or decreased genes using the MATLAB software. Immunohistochemical technique was used to detect the expressions of ERK1/2, JNK and p38 proteins among 48 osteosarcoma and benign 24 osteoblastic tumor samples.
RESULTSUsing an entrance limit of > or = 2.0, 18 differentially expressed MAPK pathway-related genes were selected (10 up-regulated, 8 down-regulated) to mapped to the MAPK pathway of KEGG which are all important node genes. The positive rates of ERK1/2, JNK and p38 proteins were 83.3% (40/48), 72.9% (35/48) and 85.4% (41/48) in osteosarcomas,and 12.5% (3/24), 8.3% (2/24) and 16.7% (4/24) in the control group, respectively. The positive rates and expression intensities were statistically different between the 2 groups (P<0.01).
CONCLUSIONMAPK pathway plays an important role in the pathogenesis of osteosarcoma. ERK, JNK and p38 form an intercoordinating network and regulate the cell proliferation, differentiation, apoptosis, invasion and migration in osteosarcoma.
Adolescent ; Adult ; Aged ; Bone Neoplasms ; genetics ; metabolism ; pathology ; Cell Line, Tumor ; Child ; Female ; Gene Expression Profiling ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Male ; Middle Aged ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Mitogen-Activated Protein Kinases ; metabolism ; Oligonucleotide Array Sequence Analysis ; Osteoblastoma ; genetics ; metabolism ; pathology ; Osteosarcoma ; genetics ; metabolism ; pathology ; Signal Transduction ; Young Adult ; p38 Mitogen-Activated Protein Kinases ; metabolism
4.Regulatory Mechanisms of the Molecular Pathways in Fibrosis Induced by MicroRNAs.
Cui YANG ; Si-Dao ZHENG ; Hong-Jin WU ; Shao-Jun CHEN
Chinese Medical Journal 2016;129(19):2365-2372
OBJECTIVEMicroRNAs (miRNAs or miRs) play critical roles in the fibrotic process in different organs. We summarized the latest research progress on the roles and mechanisms of miRNAs in the regulation of the molecular signaling pathways involved in fibrosis.
DATA SOURCESPapers published in English from January 2010 to August 2015 were selected from the PubMed and Web of Science databases using the search terms "microRNA", "miR", "transforming growth factor β", "tgf β", "mitogen-activated protein kinase", "mapk", "integrin", "p38", "c-Jun NH2-terminal kinase", "jnk", "extracellular signal-regulated kinase", "erk", and "fibrosis".
STUDY SELECTIONArticles were obtained and reviewed to analyze the regulatory effects of miRNAs on molecular signaling pathways involved in the fibrosis.
RESULTSRecent evidence has shown that miRNAs are involved in regulating fibrosis by targeting different substrates in the molecular processes that drive fibrosis, such as immune cell sensitization, effector cell activation, and extracellular matrix remodeling. Moreover, several important molecular signaling pathways involve in fibrosis, such as the transforming growth factor-beta (TGF-β) pathway, mitogen-activated protein kinase (MAPK) pathways, and the integrin pathway are regulated by miRNAs. Third, regulation of the fibrotic pathways induced by miRNAs is found in many other tissues in addition to the heart, lung, liver, and kidney. Interestingly, the actions of many drugs on the human body are also induced by miRNAs. It is encouraging that the fibrotic process can be blocked or reversed by targeting specific miRNAs and their signaling pathways, thereby protecting the structures and functions of different organs.
CONCLUSIONSmiRNAs not only regulate molecular signaling pathways in fibrosis but also serve as potential targets of novel therapeutic interventions for fibrosing diseases.
Animals ; Extracellular Signal-Regulated MAP Kinases ; genetics ; metabolism ; Fibrosis ; genetics ; metabolism ; Humans ; MicroRNAs ; genetics ; Mitogen-Activated Protein Kinases ; genetics ; metabolism ; Transforming Growth Factor beta ; genetics ; metabolism
5.Mek and p38 MAPK-dependant pathways are involoved in the positive effect of interleukin-6 on human growth hormone gene expression in rat MtT/S somatotroph cells.
Feng-Ying GONG ; Jie-Ying DENG ; Yi-Fan SHI
Chinese Medical Sciences Journal 2008;23(2):73-80
OBJECTIVETo investigate the effect of interleukin-6 (IL-6) on the human growth hormone (hGH) gene expression in a rat somatotropic pituitary cell line MtT/S.
METHODSThe plasmids containing various lengths of hGH gene 5'-promoter fragments were constructed. Stably transfected MtT/S cells were created by cotransfecting the above plasmids and pcDNA3. 1(+) with DMRIE-C transfection reagent After the administration of these cells with IL-6 and/or various inhibitors of signaling transduction pathways, the luciferase activities in MtT/S cells lysis were assayed to demonstrate the effects of IL-6 on hGH gene promoter activity and possibly involved mechanism.
RESULTSThe 10(3) U/mL IL-6 stimulated GH secretion and synthesis, and promoted the 5'-promoter activity of GH gene in stably transfected MtT/SGL cells with the action of 1.69 times above the control. Among inhibitors of signaling transduction pathways, mitogen-activated protein kinase kinase (MAPKK/MEK) inhibitor PD98059 (40 micromol/L) and p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 (5 micromol/L) completely blocked the stimulatory effect of IL-6. Western blot analysis further confirmed the activation of phosphorylated MEK and p38 MAPK in MtT/SGL cells. Neither over-expression of Pit-1 nor inhibition of Pit-1 expression affected IL-6 induction of hGH promoter activity. A series of deletion constructs of hGH promoter were created to identify the DNA sequence that mediated the effect of IL-6. The results showed that the stimulatory effect of IL-6 was abolished following deletion of the -196 to - 132 bp fragment.
CONCLUSIONSIL-6 promotes GH secretion and synthesis by rat MtT/S somatotroph cells. The stimulatory effect of IL-6 on hGH gene promoter appears to require the activation of MEK and p38 MAPK, and a fragment of promoter sequence that spans the - 196 to - 132 bp of the gene, but may be unlinked with Pit-1 protein.
Animals ; Cell Line ; Gene Expression Regulation ; Human Growth Hormone ; genetics ; metabolism ; Humans ; Interleukin-6 ; genetics ; metabolism ; JNK Mitogen-Activated Protein Kinases ; genetics ; metabolism ; MAP Kinase Signaling System ; physiology ; Mitogen-Activated Protein Kinase Kinases ; genetics ; metabolism ; Promoter Regions, Genetic ; Rats ; Somatotrophs ; cytology ; metabolism ; p38 Mitogen-Activated Protein Kinases ; genetics ; metabolism
6.Total flavonoids of Drynariae Rhizoma regulates ER-p38 MAPK signaling pathway to improve scopolamine-induced learning and memory impairments in model mice.
De-Ping ZHAO ; Da-Long LI ; Yan-Hang ZHANG ; Yue CUI ; Hong-Dan XU ; Bo YANG ; Xia LEI ; Ning ZHANG
China Journal of Chinese Materia Medica 2021;46(22):5922-5929
This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage. The mouse model of learning and memory impairments was established via intraperitoneal injection of scopolamine. Following the measurement of mouse learning and memory abilities in Morris water maze test, the hippocampal ERβ expression was detected by immunohistochemistry, and the expression levels of ERβ and phosphorylated p38(p-p38) in the hippocampus and B-cell lymphoma 2(Bcl-2), Bcl-2-associated death promoter(Bad), and cysteinyl aspartate-specific protease-3(caspase-3) in the apoptotic system were assayed by Western blot. The contents of malondia-ldehyde(MDA), superoxide dismutase(SOD), and nitric oxide(NO) in the hippocampus were then determined using corresponding kits. Compared with the control group, the model group exhibited significantly prolonged incubation period, reduced frequency of cros-sing the platform, shortened residence time in the target quadrant, lowered ERβ, Bcl-2 and SOD activity in the hippocampus, and increased p-p38/p38, Bad, caspase-3, MDA, and NO. Compared with the model group, the total flavonoids of Rhizoma Drynariae increased the expression of ERβ and SOD in the hippocampus, down-regulated the expression of neuronal pro-apoptotic proteins, up-re-gulated the expression of anti-apoptotic proteins, and reduced p-p38/p38, MDA, and NO. The effects of total flavonoids of Drynariae Rhizoma on the above indexes were reversed by ER blocker. It has been proved that the total flavonoids of Drynariae Rhizoma obviously alleviate scopolamine-induced learning and memory impairments in mice, which may be achieved by regulating the neuronal apoptotic system and oxidative stress via the ER-p38 mitogen-activated protein kinase(ER-p38 MAPK) signaling pathway.
Animals
;
Flavonoids
;
Hippocampus
;
Maze Learning
;
Mice
;
Polypodiaceae
;
Receptors, Estrogen
;
Scopolamine/toxicity*
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases/genetics*
7.Association of RAGE gene polymorphisms with MHR ratio and heart rate variability among patients with coronary heart disease.
Jing CHENG ; Xiaoguang WU ; Yunfu YU ; Jifeng YAN ; Xiaohui ZHENG ; Chuanyu GAO
Chinese Journal of Medical Genetics 2021;38(7):681-685
OBJECTIVE:
To assess the association of polymorphisms of receptor of advanced glycation end products (RAGE) gene, monocyte to high-density lipoprotein cholesterol ratio (MHR) and variability of heart rate among patients with coronary heart disease (CHD).
METHODS:
120 patients with CHD and 120 healthy individuals were respectively selected as the observation group and the control group. Allelic and genotypic differences of -429T>C, 1704G>T, 82G>S, MHR ratio and heart rate variability between the two groups and patients with different severity were analyzed. The correlation between their genotypes and MHR ratio and heart rate variability was analyzed.
RESULTS:
The 82G>S polymorphism of the RAGE gene and the allelic difference between the two groups and patients with different severity were statistically significant (P< 0.05). Compared with the control group and patients with mild to moderate phenotype, monocyte, total cholesterol, triglyceride, low density lipoprotein, MHR, low frequency in the observation group and patients with severe symptoms were significantly higher, while their high density lipoprotein, standard deviation of NN intervals (SDNN), standard deviation average of NN intervals (SDANN), root mean square successive differences, percentage of differences exceeding 50ms between adjacent normal number of intervals (PMN50), high frequency (HF) were significantly lower. The gene frequencies of G-Gly-T, T-Gly-T, G-Ser-T and G-Gly-C were correlated with SDNN, SDANN, rMSSD, PMN50, HF and MHR, but negatively correlated with low frequency.
CONCLUSION
Polymorphisms of the RAGE gene in patients with coronary heart disease are associated with the MHR ratio and heart rate variability, which can be used as markers for the diagnosis and efficacy evaluation.
Antigens, Neoplasm
;
Coronary Disease/genetics*
;
Gene Frequency
;
Glycation End Products, Advanced
;
Heart Rate
;
Humans
;
Mitogen-Activated Protein Kinases
;
Polymorphism, Genetic
8.The role of Smad4 and MAPK proteins in signal transduction pathway in non-small cell lung cancer.
Xiang-Dong TONG ; Hong-Xu LIU ; Hui-Ru ZHAO ; Shi-Guang XU ; Yu LI ; Li-Bo HAN ; Lin ZHANG
Chinese Journal of Oncology 2006;28(10):741-745
OBJECTIVETo investigate the expression of Smad4 in non-small cell lung cancer (NSCLC), its correlation with MAPK (mitogen activated protein kinase) and their clinical significance in NSCLC.
METHODSWestern blotting and RT-PCR were employed to test 42 resected lung cancers and normal lung tissues for the expression of Smad4. Imunohistochemistry was used to detect Smad4 and subtribes of MAPK in 71 paraffin samples.
RESULTSThe level of protein and mRNA expression of Smad4 in lung cancer tissues were 0.2092 +/- 0.1308 and 0.3986 +/- 0. 1982, respectively, lower than those in normal tissues (0.7852 +/- 0.4386 and 1.1206 +/- 0.6772, P < 0.05). The expression of p38, ERK1 and Smad4 was associated with TNM staging (P = 0.000, 0.000 and 0.005, respectively) and JNK1 with tumor location (P = 0.028) and staging (P = 0.000). There was a correlation between p38 and Smad4 (P = 0.000). The expression of Smad4 (P = 0.0001), p38 (P = 0.0000) and JNK1 (P = 0.0208), tumor differentiation (P = 0.0059) and staging (P = 0.0000) were significantly correlated with prognosis of NSCLC by univariate analysis. Smad4 (P = 0.019), p38 (P = 0.044), tumor differentiation (P = 0.003), and staging (P = 0.020) were correlated with prognosis tested by multivariable analysis. Taking p38 and Smad4 together, we found that the negative expression of p38 and positive expression of Smad4 were associated with a better prognosis of NSCLC (P = 0.000).
CONCLUSIONSmad4 could be of importance for the initiation and development of NSCLC. There is a significant correlation between main proteins of TGF-beta/smad4 and those of ras-MAPK signal transduction pathways. The expression of Smad4 is inhibited by p38. Smad4, as well as p38, tumor differentiation and staging can be used as prognostic factors of NSCLC.
Adult ; Aged ; Blotting, Western ; Carcinoma, Non-Small-Cell Lung ; metabolism ; pathology ; Cell Differentiation ; Female ; Humans ; Lung Neoplasms ; genetics ; metabolism ; pathology ; Male ; Middle Aged ; Mitogen-Activated Protein Kinase 3 ; genetics ; metabolism ; Mitogen-Activated Protein Kinase 8 ; genetics ; metabolism ; Mitogen-Activated Protein Kinases ; genetics ; metabolism ; Neoplasm Staging ; Prognosis ; RNA, Messenger ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Smad4 Protein ; genetics ; metabolism ; physiology ; p38 Mitogen-Activated Protein Kinases ; genetics ; metabolism
9.Effects of MD2 gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
Zhong-Min LIN ; Guo-Rong CHEN ; Quan-Bo ZHANG ; Fang WANG ; Lan-Ting XIANG ; Qiong-Jie CAO
Chinese Journal of Applied Physiology 2019;35(3):273-278
OBJECTIVE:
To investigate the effects of myeloid differentiation-2 (MD2) gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
METHODS:
The immortalized rat cardiomyocyte cell line H9C2 were transfected with MD2 small interfering RNA (si-MD2) and negative control for 24 h, then stimulated with high glucose (HG) for 48 h. RT-qPCR was performed to detect the mRNA levels of MD2 and inflammatory factors TNF-α, IL-1β and IL-6. MTS and flow cytometry were used to evaluate cell proliferation, cell cycle and apoptosis rate. Western blot was used to detect protein expression levels and phosphorylation levels.
RESULTS:
The mRNA and protein levels of MD2 in H9C2 cells were dramatically decreased after transfected with si-MD2 (P<0.01). After stimulation of high glucose, the mRNA levels of inflammatory factors, the cells in G0/G1 phase , the cell apoptosis rate and the protein level of cleaved Caspase-3 were significantly increased, while the cell proliferation ability was decreased (P<0.01). MD2 gene silencing antagonized the effects of high glucose on cell proliferation, cell cycle, cell apoptosis and the mRNA levels of TNF-α, IL-1β , IL-6(P<0.05). Western blot analysis showed that the phosphorylation levels of extracellular signal-regulated kinase(ERK1/2), P38 mitogen-activated protein kinase(P38 MAPK) and C-Jun N-terminal kinase(JNK) protein were increased significantly in H9C2 cells treated with high glucose, which could be reversed by silencing of MD2 (P<0.01).
CONCLUSION
This study demonstrates that MD2 gene silencing reverses high glucose-induced myocardial inflammation, apoptosis and proliferation inhibition via the mechanisms involving suppression of ERK, P38 MAPK, JNK signaling pathway.
Animals
;
Apoptosis
;
Cell Proliferation
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Gene Silencing
;
Glucose
;
Inflammation
;
JNK Mitogen-Activated Protein Kinases
;
metabolism
;
Lymphocyte Antigen 96
;
genetics
;
Myocytes, Cardiac
;
cytology
;
Rats
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
10.Heat shock activated Rac-MEKK-JNK pathway and hsp90 beta gene expression.
Xiao-yan LI ; Cheng LU ; Ning-hua WU ; Yu-fei SHEN
Acta Academiae Medicinae Sinicae 2002;24(3):264-268
OBJECTIVETo study the effect of Rac-MEKK-JNK (Rac-mitogen activated protein kinase kinase kinase-C-jun N-terminal protein kinase) signal pathway on heat shock-induced hsp90 beta gene expression and the impact of Hsp90 on the regulation of the pathway.
METHODSDN-Rac, DN-MEKK or DN-JNK were cotransfected with hsp90 beta CAT reporter plasmid beta 3.1 into Jurkat or LETPa-2 cells individually, the CAT mRNA expression was then determined quantitatively by competitive RT-PCR based system. Western blot was carried out to detect the expression level and phosphorylation of c-Jun in Jurkat and LETPa-2 cells that were transfected with DN-Rac, DN-MEKK or DN-JNK. By in vitro kinase activity assay and Western blot, the effect of geldnamycin (GA) on heat induced JNK activity were evaluated.
RESULTSIn Jurkat cell transfected with DN-Rac, DN-MEKK or DN-JNK, heat shock induced relative CAT mRNA expression level was decreased to (72.8 +/- 5)%, (60 +/- 13.2)% and (47.7 +/- 12.1)% of the control respectively; while in LETPa-2 cell hsp90 beta 3.1 reporter gene expression was accordingly suppressed to (16.17 +/- 5.1)%, (50.2 +/- 8.7)% and (47.5 +/- 10)% of control. C-Jun expression and phosphorylation were inhibited by the transfection of either one of DN-Rac, DN-MEKK or DN-JNK. With GA treatment, heat shock induced JNK activity was repressed, while the expression level of JNK or c-Jun was not obviously changed.
CONCLUSIONSRac-MEKK-JNK pathway promotes heat shock induced hsp90 beta gene expression and hsp90 may participate in the regulation of heat shock activated Rac-MEKK-JNK signal pathway in both Jurkat and LETPa-2 cells.
Benzoquinones ; Cell Line, Tumor ; Genes, Reporter ; HSP90 Heat-Shock Proteins ; biosynthesis ; genetics ; Hot Temperature ; Humans ; JNK Mitogen-Activated Protein Kinases ; Lactams, Macrocyclic ; Leukemia, T-Cell ; pathology ; Mitogen-Activated Protein Kinase Kinases ; physiology ; Mitogen-Activated Protein Kinases ; physiology ; Protein Kinase C ; physiology ; Quinones ; pharmacology ; Signal Transduction ; Transfection