1.Significance of MEK-ERK cascade in the development of human breast carcinoma.
Shu WANG ; Shan WANG ; Xueguang ZHU ; Jiaqing ZHANG ; Xinmin QIAO ; Yingjiang YE ; Bin LIANG ; Xiangtao MA ; Zhirong CUI
Chinese Journal of Surgery 2002;40(3):171-174
OBJECTIVETo investigate the MEK and ERK expression and their relationship with clinicopathological parameters in human breast carcinoma, and the effect of preoperative chemotherapy on MEK and ERK protein expression.
METHODSSamples were obtained from 56 patients with breast carcinoma and 8 patients with benign tumors. Sixteen of the 56 patients received preoperative chemotherapy. Western blot and immunohistochemistry were used to measure the expression of MEK1, MEK2 and ERK1, ERK2 protein.
RESULTSMEK2 and ERK1, ERK2 protein levels were increased in breast carcinoma tissue compared with those in adjacent normal tissues (t = 7.244, 5.959, 3.735, P < 0.01) and benign tumors (t = 2.206, P < 0.05). The levels of MEK1 were decreased. The expression of MEK2 protein in ER negative patients was higher than that in ER positive ones. MEK2 protein levels were lower in patients who received preoperative chemotherapy than in those who did not.
CONCLUSIONOverexpression of MEK-ERK may play an important role in the development of human breast carcinoma. MEK and ERK protein expressions are inhibited by preoperative chemotherapy.
Adult ; Aged ; Blotting, Western ; Breast Neoplasms ; diagnosis ; enzymology ; metabolism ; Female ; Humans ; Immunohistochemistry ; MAP Kinase Kinase 1 ; MAP Kinase Kinase 2 ; MAP Kinase Signaling System ; physiology ; Middle Aged ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinase Kinases ; metabolism ; Mitogen-Activated Protein Kinases ; metabolism ; Prognosis ; Protein Kinases ; metabolism ; Protein-Serine-Threonine Kinases ; metabolism ; Protein-Tyrosine Kinases ; metabolism
2.Activation of extracellular signal-related kinases 1 and 2 in Sertoli cells in experimentally cryptorchid rhesus monkeys.
Xue-Sen ZHANG ; Zhi-Hong ZHANG ; Shu-Hua GUO ; Wei YANG ; Zhu-Qiang ZHANG ; Jin-Xiang YUAN ; Xuan JIN ; Zhao-Yuan HU ; Yi-Xun LIU
Asian Journal of Andrology 2006;8(3):265-272
AIMTo assess the spatiotemporal changes in the expression of extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinases (JNK) and p38 mitogen-activated protein kinases (MAPK) in response to heat stress in the cryptorchid testis, and to investigate a possible relation to Sertoli cell dedifferentiation.
METHODSImmunohistochemistry and western blot were used to examine the expression and activation of ERK1/2, p38 and JNK in the cryptorchid testis at various stages after experimental cryptorchidism.
RESULTSThe abdominal temperature did not obviously change the total ERK1/2 expression but significantly activated phospho-ERK1/2 in the Sertoli cells of the cryptorchid testis. Heat stress increased total JNK expression in the Sertoli cells of the cryptorchid testis but did not activate phospho-JNK. Neither total p38 nor phospho-p38 was induced by heat stress in the Sertoli cells of the cryptorchid testis. Changes in the spatiotemporal expression of cytokeratin 18 (CK18), a marker of immature or undifferentiated Sertoli cells, were induced in the cryptorchid testis in a pattern similar to the activation of ERK1/2.
CONCLUSIONThe activation of ERK1/2 in the testis may be related to dedifferentiation of Sertoli cells under heat stress induced by experimental cryptorchidism.
Animals ; Cryptorchidism ; enzymology ; pathology ; Disease Models, Animal ; Enzyme Activation ; Immunohistochemistry ; MAP Kinase Kinase 4 ; metabolism ; Macaca mulatta ; Male ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Scrotum ; enzymology ; p38 Mitogen-Activated Protein Kinases ; metabolism
3.Benzo (a) pyrene-induced human embryo lung cell cycle alterations through positive regulation of mitogen-activated protein kinase signal pathways.
Hong-ju DU ; Ning TANG ; Bing-ci LIU ; Xiang-lin SHI ; Chuan-shu HUANG ; Ai GAO ; Fu-hai SHEN ; Meng YE ; Bao-rong YOU
Chinese Journal of Preventive Medicine 2007;41(4):277-280
OBJECTIVETo study the effects of benzo(a)pyrene (BaP) on the cell cycle distribution and activities of mitogen-activated protein kinase (MAPK) signal molecules (ERK1/2, JNK1/2 and p38) in human embryo lung cells (HELF), and to investigate the relationship between alterations of MAPK protein phosphorylation and the cell cycle distributions.
METHODSThe phosphorylation of MAPK were induced by exposing HELF cells to BaP at 0.1, 0.5, 2.5 and 12.5 micromol/L. The phosphorylation and protein expression levels of ERK1/2, JNK1/2 and p38 were determined through western-blotting assay. And the flow cytometry assay was used to measure the cell cycle effects in HELF cells after treatment with 2.5 micromol/L BaP for 24 h.
RESULTSThe phosphorylation levels of ERK1/2, JNK1/2 and p38 were significantly increased through BaP exposure. In addition, the phosphorylation of these three MAPKs has similar alteration pattern. We found that exposure of cells to 2.5 microM of BaP for 24 h resulted in a decrease of G(0) and G(1) population by 11.9% (F = 41.38, P < 0.01) and an increase of S population by 17.2% (F = 68.13, P < 0.01). Three chemical inhibitors of MAPK (AG126, SP600125 and SB203580) could significantly inhibit the cell cycle alteration because of BaP treatment.
CONCLUSIONERK1/2, JNK1/2 and p38 could positively regulate the BaP independently induced cell cycle alterations.
Benzo(a)pyrene ; toxicity ; Cell Cycle ; drug effects ; Cells, Cultured ; Fibroblasts ; drug effects ; metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Lung ; cytology ; embryology ; MAP Kinase Kinase 4 ; metabolism ; MAP Kinase Signaling System ; drug effects ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Mitogen-Activated Protein Kinase 8 ; metabolism ; Mitogen-Activated Protein Kinase 9 ; metabolism ; Signal Transduction ; drug effects ; p38 Mitogen-Activated Protein Kinases ; metabolism
4.Mechanism of inhibitory effect of P7 on 3T3 cell proliferation induced by basic fibroblast growth factor.
Cong WANG ; Shao-qiang LIN ; Xiao-kun LI ; Xiao-ping WU
Acta Pharmaceutica Sinica 2010;45(3):314-317
To investigate the mechanism of inhibitory effect of a novel bFGF antagonist peptide isolated from the phage display random heptapeptide library on cell proliferation induced by basic fibroblast growth factor. The effect of P7 on cell morphology was observed under an inverted microscope. Flow cytometry was applied to analyze the effect of P7 on cell cycle progress of bFGF-stimulated cells. The effect of P7 on bFGF-induced activation of MEK and Erk1/2 in MAPK pathway was detected by Western blotting. The results showed that no significant cell morphology change was observed in the range of detected concentrations of P7. Cell cycle analysis showed that P7 decreased S-phase cell population and arrested cell cycle at the G0/G1 phase of bFGF-stimulated cells. The results of MAP kinase activation assay indicated that P7 decreased bFGF-induced MEK and Erk1/2 phosphorylation in a dose-dependent manner. P7 inhibited proliferation of bFGF-stimulated Balb/c 3T3 cells possibly via cell cycle arrest at the G0/G1 phase and down-regulation of signal molecular activation in MAPK pathway.
Animals
;
BALB 3T3 Cells
;
Cell Cycle
;
drug effects
;
Cell Proliferation
;
drug effects
;
Fibroblast Growth Factor 2
;
antagonists & inhibitors
;
pharmacology
;
MAP Kinase Kinase Kinases
;
metabolism
;
MAP Kinase Signaling System
;
drug effects
;
Mice
;
Mice, Inbred BALB C
;
Mitogen-Activated Protein Kinase 1
;
metabolism
;
Mitogen-Activated Protein Kinase 3
;
metabolism
;
Peptides
;
pharmacology
;
Phosphorylation
;
Protein Binding
5.Endothelin 1 protects HN33 cells from serum deprivation-induced neuronal apoptosis through Ca2+-PKCalpha-ERK pathway.
Experimental & Molecular Medicine 2008;40(1):92-97
Endothelins (ETs), which were originally found to be potent vasoactive transmitters, were known to be implicated in nervous system, but the mode of mechanism remains unclear. ETs (ET-1, ET-2, and ET-3) were added to HN33 (mouse hippocampal neuron chi neuroblastoma) cells. Among the three types of ET, only ET-1 increased the intracellular calcium levels in a PLC dependent manner with the induction of ERK 1/2 activation. As the result of ET-1 exposure, the survival rate of HN33 cells and the PKCalpha translocation into the plasma membrane were increased. We suggest that ET-1 participated in the neuroprotective effect involving the calcium-PKCalpha-ERK1/2 pathway.
Animals
;
Apoptosis/*drug effects
;
Calcium/*metabolism
;
Cell Line
;
Cell Survival/drug effects
;
Cytosol/drug effects/metabolism
;
Endothelin-1/*pharmacology
;
Endothelin-2/pharmacology
;
Endothelin-3/pharmacology
;
Estrenes/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/*metabolism
;
Immunoblotting
;
Mice
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
Neurons/*cytology/drug effects/*enzymology
;
Neuroprotective Agents/pharmacology
;
Phosphoproteins/metabolism
;
Protein Kinase C-alpha/*metabolism
;
Protein Transport/drug effects
;
Pyrrolidinones/pharmacology
;
Serum
6.Interleukin-1 beta Induces MUC2 Gene Expression and Mucin Secretion via Activation of PKC-MEK/ERK,and PI3K in Human Airway Epithelial Cells.
Yong Dae KIM ; Jae Yun JEON ; Hyun Jae WOO ; Jung Cheul LEE ; Jin Hong CHUNG ; Si Youn SONG ; Seok Keun YOON ; Suk Hwan BAEK
Journal of Korean Medical Science 2002;17(6):765-771
Interleukin 1 beta (IL-1 beta), a proinflammatory cytokine, is related with inflammatory diseases and it up-regulates MUC2 gene expression and mucin secretion. This study was designed to investigate the signal transduction pathway of the IL-1 beta-mediated MUC2 gene expression and mucin secretion in human airway epithelial cells. In cultured human airway NCI-H292 epithelial cells, the steady state of the mRNA level of MUC2 gene expression and mucin secretion induced by IL-1 were determined by reverse transcriptase-polymerase chain reaction (RT-PCR), enzyme immunoassay, and immunoblot analysis. To observe the signal pathway of the IL-1 beta-mediated MUC2 gene expression and mucin secretion, we used several specific inhibitors. PD98059 (MEK/ERK inhibitor) suppressed IL-1 beta-mediated MUC2 gene expression and mucin secretion, while SB203580 (p38 inhibitor) did not. Ro31-8220 (PKC inhibitor) inhibited IL-1 beta-mediated MUC2 gene expression and mucin secretion. It inhibited ERK phosphorylation, but did not inhibit p38 phosphorylation. LY294002 (PI3K inhibitor) also suppressed MUC2 expression, but did not inhibit any MAPKs phosphorylation. These results suggest that the IL-1 -mediated MUC2 gene expression and mucin secretion in NCI-H292 cells are regulated through activation of the PKC-MEK/ERK pathway, and that PI3K is also involved in the IL-1 beta-mediated MUC2 gene expression and mucin secretion.
1-Phosphatidylinositol 3-Kinase/*metabolism
;
Cell Line
;
Chromones/pharmacology
;
Dose-Response Relationship, Drug
;
Enzyme Activation
;
Enzyme Inhibitors/pharmacology
;
Epithelium/*enzymology
;
Flavonoids/pharmacology
;
Humans
;
Imidazoles/pharmacology
;
Immunoassay
;
Immunoblotting
;
Indoles/pharmacology
;
Interleukin-1/metabolism/*physiology
;
Lung/cytology/*metabolism
;
MAP Kinase Signaling System
;
Mitogen-Activated Protein Kinase Kinases/*metabolism
;
Morpholines/pharmacology
;
Mucin-2
;
Mucins/*biosynthesis/metabolism
;
Phosphorylation
;
Protein Kinase C/*metabolism
;
Protein Structure, Tertiary
;
Pyridines/pharmacology
;
Reverse Transcriptase Polymerase Chain Reaction
;
Signal Transduction
;
Time Factors
7.Histone deacetylase inhibitor SAHA induces inactivation of MAPK signaling and apoptosis in HL-60 cells.
Ying WANG ; Sheng-Yu WANG ; Chun-Mei HOU ; Yuan-Ji XU ; Zhi-Yan DU ; Xiao-Dan YU
Journal of Experimental Hematology 2007;15(2):267-271
The study was aimed to investigate the molecular mechanisms of histone deacetylase inhibitor SAHA-induced apoptosis of acute myeloid leukemia cell line HL-60. The effect of SAHA on HL-60 cell proliferation was detected by MTT assay and the cell morphological changes were observed with Wright-Giemsa and Hoechst33342 staining. The cell cycle distribution was determined by flow cytometry and the expression of cell signaling proteins were detected by Western-blot analysis. The results showed that SAHA inhibited the proliferation of HL-60 cells in dose- and time-dependent manners, after 2 micromol/L SAHA exposure for 12 - 48 hours, the cell cycle was arrested at G(0)/G(1) phase and apoptotic cell death was confirmed by either defined apoptotic bodies stained by Hoechst33342, Western blot showed cleaved-PARP, which represents the activation of caspase 3. The Western blot analysis indicated the activation of two important survival signal pathways after SAHA treatment, the phosphorylation of Raf and its downstream ERK kinases were remarkable downregulated, whereas the phosphorylation of AKT and its downstream molecular mTOR were not changed. It is concluded that SAHA-induced apoptosis of HL-60 cells is mediated by inactivation of p44/42 MAPK signaling pathway.
Apoptosis
;
drug effects
;
HL-60 Cells
;
Histone Deacetylase Inhibitors
;
Humans
;
Hydroxamic Acids
;
pharmacology
;
MAP Kinase Signaling System
;
Mitogen-Activated Protein Kinase 1
;
metabolism
;
Mitogen-Activated Protein Kinase 3
;
metabolism
;
Mitogen-Activated Protein Kinases
;
metabolism
;
Signal Transduction
8.Molecular mechanism of enhanced apoptotic response in U937 cells mediated by sodium butyrate.
Jianfeng ZHOU ; Yi TANG ; Wenli LIU ; Hanying SUN ; Junbo HU ; Jianping GONG
Chinese Journal of Oncology 2002;24(4):320-322
OBJECTIVETo study the effects of sodium butyrate (NaBu) on cell cycle checkpoint and the apoptosis sensitivity in U937 cells.
METHODSTwo mutant U937 cell lines, U937-ASPI3K (ATM negative) and U937-pZeosv2(+) (ATM wild-type), were used as the cell model system. Immunoprecipitation and kinase assay were used to examine the p38 MAPK and ERK1 kinase activities. Western blot was used to analyze the phosphorylation of Bad protein.
RESULTSU937-pZeosv2(+) pretreated with NaBu exhibited enhanced apoptotic response in a NaBu dose dependent fashion upon (137)Cs irradiation, which could be abolished by olomoucine (OLM), a p38 MAPK specific inhibitor. On the other hand, Cyclin dependent kinase 2 (CDK2) specific inhibitor CDK2-I and p34cdc2/cyclinB inhibitor alsterpaullone (ALP) failed to block the effects of NaBu. Similar results were also observed in U937-ASPI3K. The effect of irradiation on p38 MAPK and ERK1 was strikingly potentiated by NaBu. Furthermore, inactivation of irradiated Bad protein via phosphorylation on serine 136 was also enhanced.
CONCLUSIONNaBu is able to enhance the apoptotic response in U937 cells, which is mediated by p38 MAPK activation but not ATM status.
Apoptosis ; Butyrates ; pharmacology ; Carrier Proteins ; metabolism ; Humans ; MAP Kinase Signaling System ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; U937 Cells ; bcl-Associated Death Protein ; p38 Mitogen-Activated Protein Kinases
9.Inhibitory effect of luteolin on the proliferation of human breast cancer cell lines induced by epidermal growth factor.
Jia-Qi SUI ; Kun-Peng XIE ; Ming-Jie XIE
Acta Physiologica Sinica 2016;68(1):27-34
The aim of the present study was to investigate the mechanism of the inhibitory effect of luteolin on the proliferation of breast cancer cells induced by epidermal growth factor (EGF) in vitro. MTT assay was used to detect the inhibitory effect of luteolin on the proliferation of MCF-7 and MDA-MB-231 cells as well as the effect on the proliferation of MCF-7 cells induced by EGF. Western blotting was used to detect the effects of luteolin on the expression of epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinases (Erk) 1/2 and signal transducers and activators of transcription-3 (STAT3) in MCF-7 cells induced by EGF. The results showed that luteolin could significantly inhibit the proliferation of MCF-7 and MDA-MB-231 cells, and the inhibitory effect on MCF-7 cells was more prominent. Moreover, luteolin could inhibit the proliferation of MCF-7 cells induced by EGF. Western blotting results showed that luteolin and AG1478 (an inhibitor of EGFR signaling) could inhibit the expression of p-EGFR and p-STAT3 in MCF-7 cells induced by EGF. Luteolin, LY294002 (an inhibitor of Akt signaling) and PD98059 (an inhibitor of Erk1/2 signaling) could inhibit the expression of p-Akt and p-Erk1/2 respectively in MCF-7 cells induced by EGF. Our data suggest that luteolin may inhibit EGF-induced activities of EGFR signaling pathway in human breast cancer cell lines, and PI3K/Akt, MAPK/Erk1/2, STAT3 signal pathways may be the major pathways that mediate the inhibitory effect of luteolin on EGFR signaling. Overall, our results may provide a theoretical foundation for the development of luteolin as anti-tumor drug.
Breast Neoplasms
;
Cell Line, Tumor
;
Cell Proliferation
;
Chromones
;
Epidermal Growth Factor
;
Humans
;
Luteolin
;
MAP Kinase Signaling System
;
Mitogen-Activated Protein Kinase 1
;
Mitogen-Activated Protein Kinase 3
;
Morpholines
;
Phosphatidylinositol 3-Kinases
;
Quinazolines
;
Receptor, Epidermal Growth Factor
;
Tyrphostins
10.IL-1beta stimulates alpha-smooth muscle actin expression through JNK/p38 signal pathway in cultured rat mesangial cells.
Yu WANG ; Xiao-Mei LI ; Hai-Yan WANG
Acta Physiologica Sinica 2002;54(3):244-250
To investigate the role of intracellular mitogen activated protein kinase (MAPKs, ERK, JNK and p38) signal pathways in IL-1beta -stimulated alpha-smooth muscle actin (alpha-SMA) expression in rat mesangial cells (rMC), alpha-SMA-promoter gene was transfected into rMC by electro-perforation method and the promoter activity was assayed after IL-1beta (10 ng/ml) stimulation. Protein expression of alpha-SMA was assayed by Western blot. The results were compared between the groups stimulated by IL-1beta with or without PD98059 and SB203580, which are thought to block ERK and p38 pathway, respectively. Dominant-negative-JNKK plasmid was co-transfected in rMC to block JNK pathway. The spatial distribution of alpha-SMA and microfilament-like structure was observed by a confocal laser scanning microscope or an electric microscope. After 6 or 24 h of incubation with IL-1beta, rMC underwent a phenotypic change, which was represented by up-regulation of alpha-SMA promoter activity and protein expression. An increase in alpha-SMA and microfilament-like structure was found around the cell nucleus. Block of JNK and/or p38 pathway greatly inhibited IL-1beta -induced alpha-SMA expression, and the block of p38 pathway also suppressed the basal level of alpha-SMA expression. In contrast, ERK pathway had no influence on the process. It is, therefore, concluded that IL-1beta -stimulated expression of alpha-SMA is due to its protein synthesis and cytoskeleton re-organization in activated rMC. Intracellular signal regulation of alpha-SMA expression seems to be mediated mainly by JNK/p38 pathways, but ERK appears to have no effect on the process.
Actins
;
biosynthesis
;
Animals
;
Cells, Cultured
;
Glomerular Mesangium
;
metabolism
;
Interleukin-1
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
MAP Kinase Kinase 4
;
MAP Kinase Signaling System
;
drug effects
;
physiology
;
Male
;
Mitogen-Activated Protein Kinase Kinases
;
drug effects
;
physiology
;
Mitogen-Activated Protein Kinases
;
drug effects
;
physiology
;
Muscle, Smooth
;
metabolism
;
Rats
;
Rats, Sprague-Dawley