1.Benzo (a) pyrene-induced human embryo lung cell cycle alterations through positive regulation of mitogen-activated protein kinase signal pathways.
Hong-ju DU ; Ning TANG ; Bing-ci LIU ; Xiang-lin SHI ; Chuan-shu HUANG ; Ai GAO ; Fu-hai SHEN ; Meng YE ; Bao-rong YOU
Chinese Journal of Preventive Medicine 2007;41(4):277-280
OBJECTIVETo study the effects of benzo(a)pyrene (BaP) on the cell cycle distribution and activities of mitogen-activated protein kinase (MAPK) signal molecules (ERK1/2, JNK1/2 and p38) in human embryo lung cells (HELF), and to investigate the relationship between alterations of MAPK protein phosphorylation and the cell cycle distributions.
METHODSThe phosphorylation of MAPK were induced by exposing HELF cells to BaP at 0.1, 0.5, 2.5 and 12.5 micromol/L. The phosphorylation and protein expression levels of ERK1/2, JNK1/2 and p38 were determined through western-blotting assay. And the flow cytometry assay was used to measure the cell cycle effects in HELF cells after treatment with 2.5 micromol/L BaP for 24 h.
RESULTSThe phosphorylation levels of ERK1/2, JNK1/2 and p38 were significantly increased through BaP exposure. In addition, the phosphorylation of these three MAPKs has similar alteration pattern. We found that exposure of cells to 2.5 microM of BaP for 24 h resulted in a decrease of G(0) and G(1) population by 11.9% (F = 41.38, P < 0.01) and an increase of S population by 17.2% (F = 68.13, P < 0.01). Three chemical inhibitors of MAPK (AG126, SP600125 and SB203580) could significantly inhibit the cell cycle alteration because of BaP treatment.
CONCLUSIONERK1/2, JNK1/2 and p38 could positively regulate the BaP independently induced cell cycle alterations.
Benzo(a)pyrene ; toxicity ; Cell Cycle ; drug effects ; Cells, Cultured ; Fibroblasts ; drug effects ; metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Lung ; cytology ; embryology ; MAP Kinase Kinase 4 ; metabolism ; MAP Kinase Signaling System ; drug effects ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Mitogen-Activated Protein Kinase 8 ; metabolism ; Mitogen-Activated Protein Kinase 9 ; metabolism ; Signal Transduction ; drug effects ; p38 Mitogen-Activated Protein Kinases ; metabolism
2.Construction and identification of antisense c-Jun N-terminal kinase 1 eukaryotic fluorescent expressing plasmids and JNK1-/- human embryo lung fibroblasts cell line.
Hui XU ; Xiao-qing HE ; Rui CHEN ; Shi-wei YIN ; Lei PENG ; Guo-qiang WANG ; Ai-ping LI ; Jian-wei ZHOU ; Qi-zhan LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2008;26(9):538-541
OBJECTIVETo construct antisense c-Jun N-terminal kinase 1 (JNK1) eukaryotic fluorescent expressing vector and JNK1-/- human embryo lung fibroblasts cell line.
METHODSTrizol reagent was used to extract total RNA in HELF. The proper primers of JNK1 were chosen and synthesized. RT-PCR and gene recombinant techniques were used to construct the fragment of JNK1. After purification, the PCR products were cut, and JNK1 were inserted reversely into eukaryotic fluorescent expressing vector pEGFP-C1. Enzyme-cutting and DNA auto-sequencing were used to prove the successful construction of JNK1 eukaryotic expressing vector. Then plasmids were extracted and transfected into HELF cells and screen by G418 24 h later. Monoclone was chosen and cultured. Fluorescent imaging and Western blot were used to identify the JNK1-/- HELF cell line.
RESULTSSequence analysis of pEGFP-C1-as JNK1 plasmids was same as expected. The expression level of JNK1 was inhibited markedly.
CONCLUSIONConstruction of antisense JNK1 eukaryotic fluorescent expressing vectors and JNK1-/- HELF cell line is successful.
Cell Line ; DNA, Antisense ; genetics ; Fibroblasts ; metabolism ; Genetic Vectors ; Humans ; Mitogen-Activated Protein Kinase 8 ; genetics ; metabolism ; Transfection
3.Effects of hydrogen sulfide on myocardial fibrosis and MAPK1/3 and MMP-8 expression in diabetic rats.
Fang LI ; Ou ZENG ; Jian LUO ; Zhi-Xiong WU ; Ting XIAO ; Jing-Jing ZHANG ; Jun YANG
Journal of Southern Medical University 2015;35(4):549-552
OBJECTIVETo explore the effects of hydrogen sulfide (H(2)S) on myocardial fibrosis and expressions of MAPK1/3 and MMP-8 in diabetic rats.
METHODSForty adult male SD rats were randomized into 4 groups, namely the control group, diabetes mellitus group (STZ group), diabetes mellitus with H(2)S treatment group (STZ+H(2)S group), and normal rats with H(2)S treatment group (H(2)S group). Diabetes was induced by intraperitoneal injections of 40 mg/kg streptozotocin (STZ). The rats in the control group received daily intraperitoneal injections of saline, and those in STZ+H(2)S group and H(2)S group were given NaHS (100 µmol/kg) injections. After 8 weeks, the pathologies of cardiac fibrosis were examined with HE staining, and the expressions of collagen I, MAPK1/3 and MMP-8 were analyzed with Western blotting.
RESULTSCompared with the control group, the diabetic rats showed increased collagen content and obvious interstitial fibrosis in the myocardial tissue with significantly increased expression levels of collagen I, MAPK1/3 and MMP-8 (P<0.05); all these changes were obviously reversed by treatment with H(2)S (P<0.05). Collagen I, MAPK1/3 and MMP-8 expression levels and the degree of myocardial fibrosis were comparable between H(2)S group and control group (P>0.05).
CONCLUSIONHydrogen sulfide can attenuate cardiac fibrosis in diabetic rats, and the mechanism may involve the inhibition of MAPK1/3/MMP-8 signal pathway.
Animals ; Collagen Type I ; metabolism ; Diabetes Mellitus, Experimental ; metabolism ; pathology ; Fibrosis ; Hydrogen Sulfide ; pharmacology ; Injections, Intraperitoneal ; Male ; Matrix Metalloproteinase 8 ; metabolism ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Myocardium ; pathology ; Rats ; Rats, Sprague-Dawley
4.C-jun N-terminal kinase-mediated signaling is essential for Staphylococcus aureus-induced U937 apoptosis.
Jia-he WANG ; Bo YU ; Hui-yan NIU ; Hui LI ; Yi ZHANG ; Xin WANG ; Ping HE
Chinese Medical Sciences Journal 2009;24(1):26-29
OBJECTIVETo investigate the effect of SP600125, a specific c-jun N-terminal protein kinase (JNK) inhibitor, on Staphylococcus aureus (S. aureus)-induced U937 cell death and the underlying mechanism.
METHODSThe human monocytic U937 cells were treated with S. aureus at different time with or without SP600125. Cell apoptosis was analyzed by flow cytometry. JNK, Bax, and caspase-3 activities were detected by Western blotting.
RESULTSS. aureus induced apoptosis in cultured U937 cells in a time-dependent manner. Expression of Bax and phospho-JNK significantly increased in S. aureus-treated U937 cells, and the level of activated caspase-3 also increased in a time-dependent manner. Inhibition of JNK with SP600125 significantly inhibited S. aureus-induced apoptosis in U937 cells.
CONCLUSIONSS. aureus can induce apoptosis in U937 cells by phosphorylation of JNK and activation of Bax and caspase-3. SP600125 protects U937 cells from apoptosis induced by S. aureus via inhibiting the activity of JNK.
Anthracenes ; pharmacology ; Apoptosis ; physiology ; Caspase 3 ; metabolism ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Macrophages ; cytology ; metabolism ; microbiology ; Mitogen-Activated Protein Kinase 8 ; antagonists & inhibitors ; metabolism ; Mitogen-Activated Protein Kinase 9 ; antagonists & inhibitors ; metabolism ; Phosphorylation ; drug effects ; Protein Kinase Inhibitors ; pharmacology ; Signal Transduction ; physiology ; Staphylococcus aureus ; physiology ; U937 Cells ; bcl-2-Associated X Protein ; metabolism
5.Effect of ERK1/2 on low shear stress-induced expression of IL-8 mRNA in human endothelial cells.
Min CHENG ; Yi LI ; Huaiqing CHEN ; Yongmei NIE ; Yi ZHANG ; Xiaoqing LIU
Journal of Biomedical Engineering 2005;22(2):230-234
Fluid shear stress plays an important role in many physiological and pathophysiological processes of the cardiovascular system. It modulates vascular function and structure via stimulating mechanosensitive endothelial cell signal events. Previous studies have identified that the exposure of vascular endothelial cells to fluid mechanical forces can modulate the expressions of many genes, including IL-8 gene. In order to gain an insight into the role of extracellular signal regulated kinase (ERK1/2) signal pathway in the expression of IL-8 mRNA in human umbilical vein endothelial cells (HUVECs) under the stimulation by low shear stress (4.20 dyne/cm2), we employed Western blot to measure phosphorylation of ERK1/2 and used quantitative reversal transcription-polymerase chain reaction (qRT-PCR) to assay the expression of IL-8 mRNA. The results showed: (1) Shear stress could activate ERK1/2 with a rapid, biphasic time course (maximum by 10 min and basal by 2 h); the treatment of HUVECs with Genistein (a highly specific inhibitor of tyrosine protein kinase, TPK) or PD98059 (the inhibitor of mitogen-activated protein/extracellular signal regulated kinase kinase, MEK) culd prevent shear-dependent activation of ERK1/2; (2) When treated with Genistein or PD98059, significant inhibition of IL-8 mRNA expression induced by low shear stress was observed in HUVECs. This in vitro study demonstrates that ERK1/2 plays an important role in IL-8 mRNA expression induced by low shear stress.
Cells, Cultured
;
Endothelium, Vascular
;
cytology
;
metabolism
;
Humans
;
Interleukin-8
;
biosynthesis
;
genetics
;
Mitogen-Activated Protein Kinase 1
;
physiology
;
Mitogen-Activated Protein Kinase 3
;
physiology
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Signal Transduction
;
Stress, Mechanical
;
Umbilical Veins
;
cytology
6.Calreticulin expression increases during delayed cardioprotection induced by hypoxic preconditioning.
Fei-Fei XU ; Yan FU ; Feng-Ying LIU ; Xiao-Mei ZHU ; Xiu-Hua LIU
Acta Physiologica Sinica 2006;58(6):536-546
Both in vivo and cultured cardiomyocyte experiments were performed to investigate the alteration of expression of calreticulin (CRT) during the delayed cardioprotection induced by hypoxic preconditioning (HPC) and the intracellular signal transduction mechanisms of the alteration. (1) Wistar rats were randomly divided into three groups: sham operation group (Sham), myocardial infarction (MI) group induced by left coronary artery ligation and HPC+MI group (4-hour HPC 24 h before MI). Twenty-four hours, 14 d and 28 d after left coronary artery ligation, myocardial function, infarction size and the area at risk were measured. Western blot was used to detect the expression of CRT, the activity of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK). (2) Cultured cardiomyocytes from neonatal Sprague-Dawley (SD) rat were divided into six groups: hypoxia/reoxygenation (H/R), HPC, HPC+H/R, p38 MAPK inhibitor SB203580+HPC+H/R (SB+HPC+H/R), SAPK inhibitor SP600125+HPC+H/R (SP+HPC+H/R) and control. Survival rate and apoptosis rate of cardiomyocytes 6 h after H/R and activities of lactate dehydrogenase (LDH) in culture medium in each group were measured. Western blot was used to detect the expression of CRT and activities of p38 MAPK and SAPK. The results are as follows: (1) During in vivo experiment, compared with MI group, HPC significantly improved +dp/dt(max) and -dp/dt(max), reduced infarction size and the area at risk. HPC dramatically changed the expression of CRT. CRT expression in HPC+MI group was 206% of that in MI group (P<0.05) 24 h after infarction, especially in the area at risk. However, 28 d after operation, the expression of CRT decreased by 57%. Correlation analysis indicated a positive correlation between CRT expression and myocardial function (r=0.9867, P<0.05), and negative correlation between CRT expression and infarction size (r=-0.9709, P<0.05). (2) In cultured cardiomyocytes, HPC attenuated cell injury induced by H/R. CRT expression increased moderately to 222% of control (P<0.05) during HPC, but increased dramatically to 503% of control (P<0.05) after H/R. HPC reduced H/R-induced CRT up-regulation to 56% of that in H/R group (P<0.05). Correlation analysis indicated that CRT expression induced by HPC had a positive correlation with p38 MAPK activity (r=0.9021, P<0.05), but a negative correlation with SAPK activity (r=-0.8211, P<0.05). Both in vivo and in vitro results indicate that HPC protects myocardium from ischemia or H/R injury. p38 MAPK is possibly involved in the up-regulation of CRT induced by HPC, while SAPK has a negative influence.
Animals
;
Calreticulin
;
metabolism
;
Cells, Cultured
;
Ischemic Preconditioning, Myocardial
;
Mitogen-Activated Protein Kinase 8
;
metabolism
;
Myocardium
;
pathology
;
Myocytes, Cardiac
;
metabolism
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
7.ERK and JNK/AP-1 pathways involved in benzo(a)pyrene induced cell cycle changes in human embryo lung fibroblasts.
Ai GAO ; Bing-ci LIU ; Chuan-shu HUANG ; Xiang-lin SHI ; Xiao-wei JIA ; Bao-rong YOU ; Meng YE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2006;24(2):72-76
OBJECTIVETo study the role of mitogen activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway in benzo(a)pyrene (B(a)P)-induced changes of cell cycle in human embryo lung fibroblasts (HELF).
METHODSAP-1 luciferase activity was determined by the Luciferase reporter gene assay using a luminometer. The expression levels and activity of extracellular signal-regulated protein kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 were determined by Western blot. Flow cytometric analysis was employed to detect the distributions of cell cycle. The dominant negative mutant of ERK2, JNK1 and p38 were applied to detect the upstream or downstream relationship of signaling pathways.
RESULTSB(a)P treatment resulted in a marked activation of AP-1 and its upstream MAPK, including ERK, JNK and p38 in human embryo lung fibroblasts (HELF). B(a)P exposure also led to increase the population of cells at S phase compared to control (P < 0.01) with a concomitant decline of cells at G(1) phase. B(a)P-induced cell cycle alternation was markedly impaired by stable expression of a dominant negative mutant of ERK2 or JNK1, but not p38. B(a)P-induced AP-1 transactivation was inhibited by the overexpression of dominant-negative mutant of ERK2 or JNK1, but not p38. Inhibition of the activation of AP-1 by curcumin, a chemical inhibitor of AP-1, significantly inhibited the cell cycle changes in response to B(a)P treatment.
CONCLUSIONERK and JNK, but not p38, mediated benzo(a)pyrene-induced cell cycle changes by AP-1 transactivation in HELF.
Benzo(a)pyrene ; pharmacology ; Blotting, Western ; Cell Cycle ; drug effects ; Cells, Cultured ; Fibroblasts ; cytology ; drug effects ; metabolism ; Flow Cytometry ; Humans ; Lung ; cytology ; embryology ; Mitogen-Activated Protein Kinase 1 ; metabolism ; physiology ; Mitogen-Activated Protein Kinase 8 ; metabolism ; physiology ; Phosphorylation ; Transcription Factor AP-1 ; metabolism ; p38 Mitogen-Activated Protein Kinases ; metabolism
8.The role of Smad4 and MAPK proteins in signal transduction pathway in non-small cell lung cancer.
Xiang-Dong TONG ; Hong-Xu LIU ; Hui-Ru ZHAO ; Shi-Guang XU ; Yu LI ; Li-Bo HAN ; Lin ZHANG
Chinese Journal of Oncology 2006;28(10):741-745
OBJECTIVETo investigate the expression of Smad4 in non-small cell lung cancer (NSCLC), its correlation with MAPK (mitogen activated protein kinase) and their clinical significance in NSCLC.
METHODSWestern blotting and RT-PCR were employed to test 42 resected lung cancers and normal lung tissues for the expression of Smad4. Imunohistochemistry was used to detect Smad4 and subtribes of MAPK in 71 paraffin samples.
RESULTSThe level of protein and mRNA expression of Smad4 in lung cancer tissues were 0.2092 +/- 0.1308 and 0.3986 +/- 0. 1982, respectively, lower than those in normal tissues (0.7852 +/- 0.4386 and 1.1206 +/- 0.6772, P < 0.05). The expression of p38, ERK1 and Smad4 was associated with TNM staging (P = 0.000, 0.000 and 0.005, respectively) and JNK1 with tumor location (P = 0.028) and staging (P = 0.000). There was a correlation between p38 and Smad4 (P = 0.000). The expression of Smad4 (P = 0.0001), p38 (P = 0.0000) and JNK1 (P = 0.0208), tumor differentiation (P = 0.0059) and staging (P = 0.0000) were significantly correlated with prognosis of NSCLC by univariate analysis. Smad4 (P = 0.019), p38 (P = 0.044), tumor differentiation (P = 0.003), and staging (P = 0.020) were correlated with prognosis tested by multivariable analysis. Taking p38 and Smad4 together, we found that the negative expression of p38 and positive expression of Smad4 were associated with a better prognosis of NSCLC (P = 0.000).
CONCLUSIONSmad4 could be of importance for the initiation and development of NSCLC. There is a significant correlation between main proteins of TGF-beta/smad4 and those of ras-MAPK signal transduction pathways. The expression of Smad4 is inhibited by p38. Smad4, as well as p38, tumor differentiation and staging can be used as prognostic factors of NSCLC.
Adult ; Aged ; Blotting, Western ; Carcinoma, Non-Small-Cell Lung ; metabolism ; pathology ; Cell Differentiation ; Female ; Humans ; Lung Neoplasms ; genetics ; metabolism ; pathology ; Male ; Middle Aged ; Mitogen-Activated Protein Kinase 3 ; genetics ; metabolism ; Mitogen-Activated Protein Kinase 8 ; genetics ; metabolism ; Mitogen-Activated Protein Kinases ; genetics ; metabolism ; Neoplasm Staging ; Prognosis ; RNA, Messenger ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Signal Transduction ; Smad4 Protein ; genetics ; metabolism ; physiology ; p38 Mitogen-Activated Protein Kinases ; genetics ; metabolism
9.High mobility group box-1 stimulates proinflammatory cytokine production in endothelial cells via MAP kinases.
Tian-yu ZHONG ; Jing TANG ; Ya-wei LIU ; Zhi-jie LI ; Deng-yu CHEN ; Ming-zhe ZHAO ; Wei WANG ; Jing-hua LIU ; Yong JIANG
Journal of Southern Medical University 2009;29(8):1517-1520
OBJECTIVETo examine the synergistic effect of recombinant human high mobility group box 1 (HMGB1) protein and lipopolysaccharides (LPS) on the release of interleukin-8 (IL-8) and monocyte chemotactic protein 1 (MCP-1) in human umbilic vein endothelial cells (HUVECs), and explore the role of mitogen-activated protein kinases (MAPK) signal transduction in cytokine release.
METHODSHUVECs were incubated with recombinant HMGB1 (0-75 ng/ml) for 24 h and the culture medium supernatant was harvested for detection of IL-8 and MCP-1 with LiquiChip system. At 0, 1, 3, 6, 12 and 24 h after stimulation with 15 ng/ml HMGB1 or 15 ng/ml HMGB1 plus 10 ng/ml LPS, the levels of IL-8 and MCP-1 in the HUVECs were examined. To test the effect of MAPK inhibitors, HUVCs were pretreated with the inhibitors SB203580 (20 mol/L), PD98059 (20 mol/L), and JNK inhibitor II (50 nmol/L) 1 h before HMGB1 and LPS stimulation.
RESULTSThe levels of IL-8 and MCP-1 were significantly increased in the HUVECs stimulated with HMGB1 protein at the concentrations of 3, 15 and 75 ng/ml in comparison with the control levels (P<0.01). Since 3-6 h after the stimulation with HMGB1, the levels of IL-8 and MCP-1 began to increase gradually, and steadily increased at 12 and 24 h, all significantly higher than those of the control group (P<0.01). Stimulation of the HUVECs with LPS (10 ng
CONCLUSIONHMGB1 protein can activate HUVECs to produce the chemokines IL-8 and MCP-1 in a dose- and time-dependent manner. HMGB1 also acts synergistically with LPS to induce IL-8 and MCP-1 release, which might play an important role in the development of sepsis. MAPK signal transduction plays an important role in HMGB1 and LPS-induced IL-8 and MCP-1 release.
Cell Line ; Chemokine CCL2 ; blood ; metabolism ; Dose-Response Relationship, Drug ; Endothelial Cells ; drug effects ; metabolism ; HMGB1 Protein ; pharmacology ; Humans ; Interleukin-8 ; blood ; metabolism ; Mitogen-Activated Protein Kinases ; antagonists & inhibitors ; metabolism ; Protein Kinase Inhibitors ; pharmacology ; Time Factors
10.Effect of osthol on apoptosis and bone resorption of osteoclasts cultured in vitro.
Lei-Guo MING ; Ming-Gang WANG ; Ke-Ming CHEN ; Jian ZHOU ; Gui-Qiu HAN ; Rui-Qing ZHU
Acta Pharmaceutica Sinica 2012;47(2):174-179
This study is to investigate the effect of osthol on osteoclasts' activity, bone resorption as well as apoptosis in vitro, and explore the mechanism of osthol in preventing osteoporosis. Osteoclasts were separated from long-limb bones of new born rabbits, cultured in 24-well plate with glass slices and bone slices, and treated by 1 x 10(-5) mol x L(-1) osthol. Osteoclasts were identified by observing live cells with phase contrast microscope, HE staining, TRAP staining and toluidine blue staining of bone resorption pits. The numbers of bone resorption pits were counted as well as the surface area of bone resorption on bone slice. Osteoclasts were stained with acridine orange to detect the cell apoptosis. The ratio of apoptotic osteoclasts was observed under fluorescence microscope. The gene expression of RANKL, OPG, TRAP and p-JNK1/2 protein expression were examined using real time PCR and Western blotting, respectively. Comparing with the control group without osthol, the rates of apoptotic osteoclasts increased obviously and the number and area of bone resorption pits decreased evidently with 1 x 10(-5) mol x L(-1) osthol. There is significant difference between control group and experiment group treated by 1 x 10(-5) mol x L(-1) osthol. Therefore, the osthol through RANK+RANKL/TRAF6/Mkk/JNK signal pathway inhibits the osteoclasts activity, enhances osteoclasts apoptotic and inhibits the bone resorption.
Acid Phosphatase
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Bone Resorption
;
Cells, Cultured
;
Cnidium
;
chemistry
;
Coumarins
;
isolation & purification
;
pharmacology
;
Gene Expression
;
Isoenzymes
;
metabolism
;
Mitogen-Activated Protein Kinase 8
;
metabolism
;
Mitogen-Activated Protein Kinase 9
;
metabolism
;
Osteoclasts
;
metabolism
;
pathology
;
Osteoprotegerin
;
metabolism
;
Phosphorylation
;
Plants, Medicinal
;
chemistry
;
RANK Ligand
;
metabolism
;
Rabbits
;
Seeds
;
chemistry
;
Signal Transduction
;
Tartrate-Resistant Acid Phosphatase