1.Lipopolysaccharide Stimulates Surfactant Protein-A in Human Renal Epithelial HK-2 Cells through Upregulating Toll-like Receptor 4 Dependent MEK1/2-ERK1/2-NF-κB Pathway.
Jiao LIU ; Guang LI ; Wen-Jie XIE ; Lu WANG ; Rui ZHANG ; Ke-Sheng HUANG ; Qing-Shan ZHOU ; De-Chang CHEN
Chinese Medical Journal 2017;130(10):1236-1243
BACKGROUNDSurfactant protein-A (SP-A) contributes to the regulation of sepsis-induced acute kidney injury. In a previous study, we demonstrated that the expression of SP-A in the human renal tubular epithelial (HK-2) cells can be stimulated by lipopolysaccharide (LPS). The present study evaluated the possible signal-transducing mechanisms of LPS-induced SP-A biosynthesis in the HK-2 cells.
METHODSTetrazolium salt colorimetry (MTT) assay was used to detect cell viability of HK-2 cells after LPS stimulation on different time points. HK-2 cells were stimulated with 100 ng/ml of LPS for different durations to determine the effects of LPS on SP-A and toll-like receptor 4 (TLR4) messenger RNA (mRNA) expression, as well as phosphorylation of mitogen-activated/extracellular signal-regulated kinase (MEK) 1, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38MAPK), and nuclear factor-kappa B (NF-κB) inhibitor-alpha (IkB-α). Then, HK-2 cells were pretreated with CLI-095, a TLR4 inhibitor, to analyze mRNA and protein levels of SP-A and TLR4 and expression of NF-κB in the cytoplasm and nucleus of HK-2 before LPS exposure.
RESULTSHK-2 cells exposed to 100 ng/ml of LPS for 1, 6, and 24 h did not affect cell viability which showed no toxic effect of 100 ng/ml LPS on cells (P = 0.16); however, the biosynthesis of SP-A mRNA and protein in HK-2 cells was significantly increased (P = 0.02). As to the mechanism, LPS enhanced transmembrane receptor TLR4 protein expression. Sequentially, LPS time dependently augmented phosphorylation of MEK1, ERK1/2, and p38MAPK. In addition, levels of phosphorylated IκB-α and nuclear NF-κB were augmented with LPS exposure for 2 h. LPS-induced SP-A and TLR4 mRNA as well as NF-κB expression were significantly inhibited by pretreatment with CLI-095.
CONCLUSIONSThe present study exhibited that LPS can increase SP-A synthesis in human renal epithelial cells through sequentially activating the TLR4-related MEK1-ERK1/2-NF-κB-dependent pathway.
Cell Line ; Cell Survival ; drug effects ; physiology ; Colorimetry ; Humans ; Kidney ; cytology ; metabolism ; Lipopolysaccharides ; toxicity ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; NF-kappa B ; metabolism ; Pulmonary Surfactant-Associated Protein A ; metabolism ; Sulfonamides ; pharmacology ; Tetrazolium Salts ; chemistry ; Toll-Like Receptor 4 ; antagonists & inhibitors ; metabolism
2.Angiotensin III increases monocyte chemoattractant protein-1 expression in cultured human proximal tubular epithelial cells.
Hyung Wook KIM ; Young Ok KIM ; Sun Ae YOON ; Jeong Sun HAN ; Hyun Bae CHUN ; Young Soo KIM
The Korean Journal of Internal Medicine 2016;31(1):116-124
BACKGROUND/AIMS: We investigated whether angiotensin III (Ang III) is involved in monocyte recruitment through regulation of the chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal tubular epithelial cells (HK-2 cells). METHODS: We measured MCP-1 levels in HK-2 cells that had been treated with various concentrations of Ang III and Ang II type-1 (AT1) receptor antagonists at various time points. The phosphorylation states of p38, c-Jun N-terminal kinases (JNK), and extracellular-signal-regulated kinases were measured in Ang III-treated cells to explore the mitogen-activated protein kinase (MAPK) pathway. MCP-1 levels in HK-2 cell-conditioned media were measured after pre-treatment with the transcription factor inhibitors curcumin or pyrrolidine dithiocarbamate. RESULTS: Ang III increased MCP-1 protein production in dose- and time-dependent manners in HK-2 cells, which was inhibited by the AT1 receptor blocker losartan. p38 MAPK activity increased significantly in HK-2 cells exposed to Ang III for 30 minutes, and was sustained at higher levels after 60 minutes (p < 0.05). Total phosphorylated JNK protein levels tended to increase 20 minutes after stimulation with Ang III. Pre-treatment with a p38 inhibitor, a JNK inhibitor, or curcumin significantly inhibited Ang III-induced MCP-1 production. CONCLUSIONS: Ang III increases MCP-1 synthesis via stimulation of intracellular p38 and JNK MAPK signaling activity and subsequent activated protein-1 transcriptional activity in HK-2 cells.
Angiotensin II Type 1 Receptor Blockers/pharmacology
;
Angiotensin III/*pharmacology
;
Cell Line
;
Chemokine CCL2/*metabolism
;
Dose-Response Relationship, Drug
;
Epithelial Cells/*drug effects/metabolism
;
Humans
;
JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
;
Kidney Tubules, Proximal/*drug effects/metabolism
;
Phosphorylation
;
Protein Kinase Inhibitors/pharmacology
;
Signal Transduction/drug effects
;
Time Factors
;
Transcription Factor AP-1/metabolism
;
Up-Regulation
;
p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
3.Extracellular signal-regulated kinase signaling pathway regulates the endothelial differentiation of periodontal ligament stem cells.
Hong ZHU ; Lankun LUO ; Ying WANG ; Jun TAN ; Peng XUE ; Qintao WANG
Chinese Journal of Stomatology 2016;51(3):154-159
OBJECTIVETo investigate the effect of extracellular signal-regulated kinase (ERK) signaling pathway on the endothelial differentiation of periodontal ligament stem cells (PDLSC).
METHODSHuman PDLSC was cultured in the medium with vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) to induce endothelial differentiation. Endothelial inducing cells was incubated with U0126, a specific p-ERK1/2 inhibitor. PDLSC from one person were randomly divided into four groups: control group, endothelial induced group, endothelial induced+DMSO group and endothelial induced+U0126 group. The protein expression of the p-EKR1/2 was analyzed by Western blotting at 0, 1, 3, 6 and 12 hours during endonthelial induction. The mRNA expressions of CD31, VE-cadherin, and VEGF were detected by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) after a 7-day induction. The proportion of CD31(+) to VE-cadherin(+) cells was identified by flow cytometry, and the ability of capillary-like tubes formation was detected by Matrigel assay after a 14-day induction. The measurement data were statistically analyzed.
RESULTSPhosphorylated ERK1/2 protein level in PDLSC was increased to 1.24±0.12 and 1.03±0.24 at 1 h and 3 h respectively, during the endothelial induction (P<0.01). The mRNA expressions of CD31 and VEGF in induced+U0126 group were decreased to 0.09±0.18 and 0.49±0.17, which were both significantly different with those in induced group (P<0.05). The proportion of CD31(+) to VE-cadherin(+) cells of induced+U0126 group were decreased to 5.22±0.85 and 3.56±0.87, which were both significantly different with those in induced group (P<0.05). In Matrigel assay, the branching points, tube number and tube length were decreased to 7.0±2.7, 33.5±6.4, and (15 951.0±758.1) pixels, which were all significantly different with those in induced group (P<0.05).
CONCLUSIONSThe endothelial differentiation of PDLSC is positively regulated by ERK signaling pathway. Inhibition of ERK1/2 phosphorylation could suppress endothelial differentiation of PDLSC.
Antigens, CD ; genetics ; metabolism ; Butadienes ; pharmacology ; Cadherins ; genetics ; metabolism ; Cell Differentiation ; Endothelial Cells ; cytology ; physiology ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; physiology ; Fibroblast Growth Factor 2 ; pharmacology ; Humans ; Mitogen-Activated Protein Kinase 3 ; antagonists & inhibitors ; metabolism ; Nitriles ; pharmacology ; Periodontal Ligament ; cytology ; metabolism ; Phosphorylation ; Platelet Endothelial Cell Adhesion Molecule-1 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Signal Transduction ; Stem Cells ; cytology ; physiology ; Time Factors ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; pharmacology
4.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
3T3 Cells
;
Animals
;
Cartilage, Articular
;
cytology
;
Cell Survival
;
physiology
;
Cells, Cultured
;
Chondrocytes
;
drug effects
;
enzymology
;
Coculture Techniques
;
Culture Media, Conditioned
;
Gelatinases
;
drug effects
;
Interleukin-1beta
;
pharmacology
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
MAP Kinase Signaling System
;
physiology
;
Matrix Metalloproteinase 2
;
drug effects
;
Matrix Metalloproteinase 9
;
drug effects
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
drug effects
;
Monocytes
;
cytology
;
NF-kappa B
;
antagonists & inhibitors
;
Osteoclasts
;
physiology
;
Protease Inhibitors
;
analysis
;
Tissue Inhibitor of Metalloproteinase-1
;
drug effects
;
Tissue Inhibitor of Metalloproteinase-2
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
5.Antiangiogenic Activity of Acer tegmentosum Maxim Water Extract in Vitro and in Vivo.
Eok Cheon KIM ; So Hun KIM ; Shan Ji PIAO ; Tack Joong KIM ; Kiho BAE ; Han Sung KIM ; Soon Sun HONG ; Byoung Ick LEE ; Moonsuk NAM
Journal of Korean Medical Science 2015;30(7):979-987
Angiogenesis, the formation of new blood vessels, is critical for tumor growth and metastasis. Notably, tumors themselves can lead to angiogenesis by inducing vascular endothelial growth factor (VEGF), which is one of the most potent angiogenic factors. Inhibition of angiogenesis is currently perceived as one of the most promising strategies for the blockage of tumor growth. In this study, we investigated the effects of Acer tegmentosum maxim water extract (ATME) on angiogenesis and its underlying signal mechanism. We studied the antiangiogenic activity of ATME by using human umbilical vein endothelial cells (HUVECs). ATME strongly inhibited VEGF-induced endothelial cell proliferation, migration, invasion, and tube formation, as well as vessel sprouting in a rat aortic ring sprouting assay. Moreover, we found that the p44/42 mitogen activated protein (MAP) kinase signaling pathway is involved in the inhibition of angiogenesis by ATME. Moreover, when we performed the in vivo matrigel plug assay, VEGF-induced angiogenesis was potently reduced when compared to that for the control group. Taken together, these results suggest that ATME exhibits potent antiangiogenic activity in vivo and in vitro and that these effects are regulated by the extracellular regulated kinase (ERK) pathway.
Acer/*metabolism
;
Angiogenesis Inhibitors/*pharmacology
;
Animals
;
Cell Line, Tumor
;
Cell Movement/drug effects
;
Cell Proliferation/drug effects
;
Cell Survival
;
Extracellular Signal-Regulated MAP Kinases/*metabolism
;
Hep G2 Cells
;
Human Umbilical Vein Endothelial Cells/*drug effects
;
Humans
;
MAP Kinase Signaling System/drug effects
;
Mice
;
Mice, Inbred C57BL
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Neoplasm Invasiveness/pathology
;
Neovascularization, Pathologic/*drug therapy/prevention & control
;
Nitric Oxide Synthase Type III/metabolism
;
Phosphorylation/drug effects
;
Plant Extracts/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Transcription Factors/metabolism
;
Vascular Endothelial Growth Factor A/antagonists & inhibitors/metabolism
6.IL-17 Induces MPTP opening through ERK2 and P53 signaling pathway in human platelets.
Jing YUAN ; Pei-wu DING ; Miao YU ; Shao-shao ZHANG ; Qi LONG ; Xiang CHENG ; Yu-hua LIAO ; Min WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):679-683
The opening of mitochondrial permeability transition pore (MPTP) plays a critical role in platelet activation. However, the potential trigger of the MPTP opening in platelet activation remains unknown. Inflammation is the crucial trigger of platelet activation. In this study, we aimed to explore whether and how the important inflammatory cytokine IL-17 is associated with MPTP opening in platelets activation by using MPTP inhibitor cyclosporine-A (CsA). The mitochondrial membrane potential (ΔΨm) was detected to reflect MPTP opening levels. And the platelet aggregation, activation, and the primary signaling pathway were also tested. The results showed that the MPTP opening levels were increased and Δψm reduced in platelets administrated with IL-17. Moreover, the levels of aggregation, CD62P, PAC-1, P53 and the phosphorylation of ERK2 were enhanced along with the MPTP opening in platelets pre-stimulated with IL-17. However, CsA attenuated these effects triggered by IL-17. It was suggested that IL-17 could induce MPTP opening through ERK2 and P53 signaling pathway in platelet activation and aggregation.
Blood Platelets
;
cytology
;
drug effects
;
metabolism
;
Cell Separation
;
Cyclosporine
;
pharmacology
;
Dual Specificity Phosphatase 2
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Humans
;
Interleukin-17
;
metabolism
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondria
;
drug effects
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
agonists
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
genetics
;
metabolism
;
P-Selectin
;
genetics
;
metabolism
;
Phosphorylation
;
drug effects
;
Platelet Activation
;
drug effects
;
Platelet Aggregation
;
drug effects
;
Primary Cell Culture
;
Signal Transduction
;
Tumor Suppressor Protein p53
;
genetics
;
metabolism
7.Bilirubin Activates Transcription of HIF-1alpha in Human Proximal Tubular Cells Cultured in the Physiologic Oxygen Content.
Sung Gyun KIM ; Shin Young AHN ; Eun Seong LEE ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S146-S154
The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.
Bilirubin/*pharmacology
;
Cell Line
;
Epithelial Cells/cytology/metabolism
;
Humans
;
Hydrogen Peroxide/toxicity
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/*metabolism
;
Kidney Tubules, Proximal/cytology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
NADPH Oxidase/antagonists & inhibitors/genetics/metabolism
;
Oxygen/*pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphorylation/drug effects
;
Proto-Oncogene Proteins c-akt/metabolism
;
RNA Interference
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism
;
Signal Transduction/drug effects
;
TOR Serine-Threonine Kinases/metabolism
;
Transcriptional Activation/*drug effects
;
Up-Regulation/drug effects
8.Recent Update of Molecular Targeted Therapy in Pancreatic Cancer.
The Korean Journal of Gastroenterology 2013;61(3):147-154
Pancreatic ductal adenocarcinoma is one of the most dreaded malignancies and the 5th leading cause of cancer-related death in Korea. Late diagnosis and unfavorable response to both chemotherapy and radiotherapy result in exceptionally poor prognosis. Recently, the rapid advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis, and there are many attempts to modulate signal pathway using specific targeted agent. However, the most of them have so far failed to improve survival significantly except erlotinib. The real challenge is now how these impressive advances of molecular biology could be successfully integrated into better clinical implications. Herein, we summarize the latest insights into the carcinogenesis, and their repercussions for novel targeted agents for pancreatic cancer, and provide a review of recent clinical trials using molecular targeted therapy.
Antineoplastic Agents/*therapeutic use
;
Epigenesis, Genetic
;
Humans
;
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism
;
Molecular Targeted Therapy
;
Pancreatic Neoplasms/*drug therapy/metabolism/pathology
;
Poly(ADP-ribose) Polymerases/antagonists & inhibitors/metabolism
;
Receptor, Epidermal Growth Factor/antagonists & inhibitors/metabolism
;
Receptor, IGF Type 1/antagonists & inhibitors/metabolism
;
Vascular Endothelial Growth Factor A/antagonists & inhibitors/metabolism
9.Current Status of Molecular Targeted Therapies in Hepatocellular Carcinoma.
The Korean Journal of Gastroenterology 2013;61(3):136-146
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in Korea. Curative treatment is only possible when the disease is diagnosed at the early stage. The prognosis of patients with HCC is even dismal in advanced stages. No systemic cytotoxic chemotherapy has proven to be beneficial in overall survival. Recently, the understanding of the molecular pathogenesis led to the development of new therapies. With the evidence of dysregulation of critical genes associated with cellular proliferation, growth factor signaling, cell cycling, apoptosis, and angiogenesis in HCC, a number of molecular target agents are under clinical trials. Sorafenib is the first systemic anticancer drug which has proven to gain survival benefit in the global as well as Asia-Pacific trials. However, the survival gain is still modest, and further efforts to improve outcomes in patients with HCC are necessary by developing novel drugs or combining other forms of therapies. This article will review signaling pathways in HCC and introduce molecular target agents under investigation currently.
Antineoplastic Agents/therapeutic use
;
Carcinoma, Hepatocellular/*drug therapy/metabolism/pathology
;
Humans
;
Liver Neoplasms/*drug therapy/metabolism/pathology
;
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism
;
Molecular Targeted Therapy
;
Niacinamide/analogs & derivatives/therapeutic use
;
Phenylurea Compounds/therapeutic use
;
Protein Kinase Inhibitors/therapeutic use
;
Proto-Oncogene Proteins c-akt/antagonists & inhibitors/metabolism
;
Receptor, IGF Type 1/antagonists & inhibitors/metabolism
;
Signal Transduction
;
TOR Serine-Threonine Kinases/antagonists & inhibitors/metabolism
;
Wnt Proteins/antagonists & inhibitors/metabolism
10.Recent Update of Molecular Targeted Therapy in Pancreatic Cancer.
The Korean Journal of Gastroenterology 2013;61(3):147-154
Pancreatic ductal adenocarcinoma is one of the most dreaded malignancies and the 5th leading cause of cancer-related death in Korea. Late diagnosis and unfavorable response to both chemotherapy and radiotherapy result in exceptionally poor prognosis. Recently, the rapid advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis, and there are many attempts to modulate signal pathway using specific targeted agent. However, the most of them have so far failed to improve survival significantly except erlotinib. The real challenge is now how these impressive advances of molecular biology could be successfully integrated into better clinical implications. Herein, we summarize the latest insights into the carcinogenesis, and their repercussions for novel targeted agents for pancreatic cancer, and provide a review of recent clinical trials using molecular targeted therapy.
Antineoplastic Agents/*therapeutic use
;
Epigenesis, Genetic
;
Humans
;
Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism
;
Molecular Targeted Therapy
;
Pancreatic Neoplasms/*drug therapy/metabolism/pathology
;
Poly(ADP-ribose) Polymerases/antagonists & inhibitors/metabolism
;
Receptor, Epidermal Growth Factor/antagonists & inhibitors/metabolism
;
Receptor, IGF Type 1/antagonists & inhibitors/metabolism
;
Vascular Endothelial Growth Factor A/antagonists & inhibitors/metabolism

Result Analysis
Print
Save
E-mail