1.Research progress on the effect of mitochondrial network remodeling on macrophages.
Lianlian ZHU ; Xiangmin KONG ; Wei ZHU
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):656-662
Remodeling of the mitochondrial network is an important process in the maintenance of cellular homeostasis and is closely related to mitochondrial function. Interactions between the biogenesis of new mitochondria and the clearance of damaged mitochondria (mitophagy) is an important manifestation of mitochondrial network remodeling. Mitochondrial fission and fusion act as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been described in a variety of tissues and cell types and under a variety of conditions. For example, robust remodeling of the mitochondrial network has been reported during the polarization and effector function of macrophages. Previous studies have also revealed the important role of mitochondrial morphological structure and metabolic changes in regulating the function of macrophages. Therefore, the processes that regulate remodeling of the mitochondrial network also play a crucial role in the immune response of macrophages. In this paper, we focus on the molecular mechanisms of mitochondrial regeneration, fission, fusion, and mitophagy in the process of mitochondrial network remodeling, and integrate these mechanisms to investigate their biological roles in macrophage polarization, inflammasome activation, and efferocytosis.
Mitochondria
;
Mitophagy
;
Homeostasis/physiology*
;
Phagocytosis
;
Macrophages/metabolism*
2.Essential role of mitochondria in tumorigenesis.
Chunling TANG ; Zhonghuai XIANG ; Hongjuan CUI
Chinese Journal of Biotechnology 2013;29(11):1548-1557
Tumorigenesis is a complex process that is regulated by a variety of network signals. With the continuous development of the process, tumor cells gradually exhibit lots of hallmarks.Tumor cells have the characteristics of unlimited proliferation, resistance to apoptosis, evading immune surveillance, among others. As a unique organelles, mitochondria play an important role in cellular energy metabolism, reactive oxygen species producing and apoptosis process. Particularly, mitochondria have a close relationship with tumor development. In this review, we focus on the essential role of mitochondria in tumor cells development.
Animals
;
Energy Metabolism
;
Humans
;
Mitochondria
;
metabolism
;
physiology
;
Neoplasms
;
etiology
;
genetics
;
physiopathology
;
Tumor Microenvironment
;
physiology
3.Relationship between Notch signaling pathway and mitochondrial energy metabolism.
Qi SHEN ; Yufan YUAN ; Jinlan JIN
Chinese Critical Care Medicine 2023;35(12):1321-1326
Notch signaling pathway is a highly conserved signaling pathway in the process of evolution. It is composed of three parts: Notch receptor, ligand and effector molecules responsible for intracellular signal transduction. It plays an important role in cell proliferation, differentiation, development, migration, apoptosis and other processes, and has a regulatory effect on tissue homeostasis and homeostasis. Mitochondria are the sites of oxidative metabolism in eukaryotes, where sugars, fats and proteins are finally oxidized to release energy. In recent years, the regulation of Notch signaling pathway on mitochondrial energy metabolism has attracted more and more attention. A large number of data have shown that Notch signaling pathway has a significant effect on mitochondrial energy metabolism, but the relationship between Notch signaling pathway and mitochondrial energy metabolism needs to be specifically and systematically discussed. In this paper, the relationship between Notch signaling pathway and mitochondrial energy metabolism is reviewed, in order to improve the understanding of them and provide new ideas for the treatment of related diseases.
Signal Transduction/physiology*
;
Mitochondria
;
Receptors, Notch/metabolism*
;
Cell Differentiation/physiology*
;
Energy Metabolism
4.The role of mitochondria-associated endoplasmic reticulum membranes in age-related cardiovascular diseases.
Yu ZHANG ; Xin-Yi ZHAO ; Wen-Jun XIE ; Yi ZHANG
Acta Physiologica Sinica 2023;75(6):799-816
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are the physical connection sites between mitochondria and endoplasmic reticulum (ER). As the compartments controlling substance and information communications between ER and mitochondria, MAMs were involved in the regulation of various pathophysiological processes, such as calcium homeostasis, mitochondrial morphology and function, lipid metabolism and autophagy. In the past decades, accumulating lines of evidence have revealed the pivotal role of MAMs in diverse cardiovascular diseases (CVD). Aging is one of the major independent risk factors for CVD, which causes progressive degeneration of the cardiovascular system, leading to increased morbidity and mortality of CVD. This review aims to summarize the research progress of MAMs in age-related CVD, and explore new targets for its prevention and treatment.
Humans
;
Mitochondrial Membranes
;
Cardiovascular Diseases/metabolism*
;
Calcium Signaling/physiology*
;
Mitochondria/physiology*
;
Endoplasmic Reticulum/metabolism*
5.Renal Fibrosis and Mitochondrial Damage.
Jiao QIN ; Zhang-Zhe PENG ; Qian LI ; Rui WEN ; Li-Jian TAO
Chinese Medical Journal 2018;131(22):2769-2772
6.NADPH oxidase-dependent oxidative stress and mitochondrial damage in hippocampus of D-galactose-induced aging rats.
Zhengde DU ; Yujuan HU ; Yang YANG ; Yu SUN ; Sulin ZHANG ; Tao ZHOU ; Lingling ZENG ; Wenjuan ZHANG ; Xiang HUANG ; Weijia KONG ; Honglian ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(4):466-472
Mitochondrial DNA (mtDNA) common deletion (CD) plays a significant role in aging and age-related diseases. In this study, we used D-galactose (D-gal) to generate an animal model of aging and the involvement and causative mechanisms of mitochondrial damage in such a model were investigated. Twenty 5-week-old male Sprague-Dawley rats were randomly divided into two groups: D-gal group (n=10) and control group (n=10). The quantity of the mtDNA CD in the hippocampus was determined using a TaqMan real-time PCR assay. Transmission electron microscopy was used to observe the mitochondrial ultrastructure in the hippocampus. Western blot was used to detect the protein levels of NADPH oxidase (NOX) and uncoupling protein 2 (UCP2). We found that the level of mtDNA CD was significantly higher in the hippocampus of D-gal-induced aging rats than in control rats. In comparison with the control group, the mitochondrial ultrastructure in the hippocampus of D-gal-treated rats was damaged, and the protein levels of NOX and UCP2 were significantly increased in the hippocampus of D-gal-induced aging rats. This study demonstrated that the levels of mtDNA CD and NOX protein expression were significantly increased in the hippocampus of D-gal-induced aging rats. These findings indicate that NOX-dependent reactive oxygen species generation may contribute to D-gal-induced mitochondrial damage.
Aging
;
metabolism
;
physiology
;
Animals
;
Galactose
;
adverse effects
;
metabolism
;
Hippocampus
;
metabolism
;
physiology
;
Male
;
Mitochondria
;
metabolism
;
physiology
;
NADPH Oxidases
;
metabolism
;
Oxidative Stress
;
physiology
;
Rats
;
Rats, Sprague-Dawley
7.Nitric oxide: promoter or suppressor of programmed cell death?
Yiqin WANG ; Chen CHEN ; Gary J LOAKE ; Chengcai CHU
Protein & Cell 2010;1(2):133-142
Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and - independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.
Animals
;
Apoptosis
;
physiology
;
Caspases
;
metabolism
;
Caspases, Effector
;
metabolism
;
Cyclic GMP
;
metabolism
;
Mitochondria
;
metabolism
;
physiology
;
Nitric Oxide
;
metabolism
;
physiology
;
Plant Cells
;
Plant Physiological Phenomena
;
Signal Transduction
;
physiology
8.Research advances in relationship between mitochondrial dynamics and cellular energy metabolism and exercise intervention.
Acta Physiologica Sinica 2019;71(4):625-636
Mitochondrial dynamics, involving mitochondrial fusion, fission and autophagy, plays an important role in maintaining cellular physiological function and homeostasis. Mitochondria are the "energy plant" of human body, so the changes of mitochondrial fusion, division and autophagy are important for cell respiration and energy production. On the other hand, energy metabolism influences mitochondrial dynamics in turn. This paper reviewed the recent advances in studies on the relationship between energy metabolism and the proteins regulating mitochondrial fusion, fission and autophagy. The association of mitochondrial dynamics with electron chain complex expression, oxidative phosphorylation and ATP synthesis upon exercise intervention will provide theoretical references for the further studies in sports training and disease intervention.
Adenosine Triphosphate
;
biosynthesis
;
Autophagy
;
Energy Metabolism
;
Exercise
;
Humans
;
Mitochondria
;
physiology
;
Mitochondrial Dynamics
;
Mitochondrial Proteins
;
metabolism
9.ATP-sensitive potassium channels: novel potential roles in Parkinson's disease.
Jie ZENG ; Gang WANG ; Sheng-Di CHEN
Neuroscience Bulletin 2007;23(6):370-376
The ATP-sensitive potassium (K(ATP)) channels which extensively distribute in diverse tissues (e.g. vascular smooth muscle, cardiac cells, and pancreas) are well-established for characteristics like vasodilatation, myocardial protection against ischemia, and insulin secretion. The aim of this review is to get insight into the novel roles of K(ATP) channels in Parkinson's disease (PD), with consideration of the specificities K(ATP) channels in the central nervous system (CNS), such as the control of neuronal excitability, action potential, mitochondrial function and neurotransmitter release.
Humans
;
KATP Channels
;
drug effects
;
physiology
;
Mitochondria
;
metabolism
;
Parkinson Disease
;
metabolism
;
therapy
10.Effects of long-term sleep deprivation on mitochondria stress in locus coeruleus and the tyrosine hydroxylasic projection in mice.
Jing ZHANG ; Jing MA ; Guang-Fa WANG
Chinese Journal of Applied Physiology 2014;30(2):153-156
OBJECTIVETo observe the changes of mitochondria stress in locus coeruleus and the tyrosine hydroxylasic projection after long-term sleep deprivation.
METHODSSleep deprivation mice model was set up by employing "novel environments" method. The expression of NAD -dependent deacetylase Sirtuin type 3 (SIRT3), which regulates mitochondrial energy production and oxidative stress, and heat shock protein 60 (HSP60), a major biomarker of mitochondrial stress, and the tyrosine hydroxylasic projection from locus coeruleus were analyzed after a 5-day sleep deprivation.
RESULTSCompared to the control group, the expression of SIRT3 in locus coeruleus was significantly decreased in respouse to long-term sleep deprivation, while the expression of HSP60 was significantly increased. In addition, relative to control group, pereentage area of the tyrosine hydroxylasic projection to anterior cingulate cortex was substantial decreased in long-term sleep deprivation group.
CONCLUSIONLong-term sleep deprivation induced the decreased level of SIRT3 expression and the elevation of mitochondrial stress in locus coenileus, which may further lead to the loss of tyrosine hydroxylasic projection in mice.
Animals ; Chaperonin 60 ; metabolism ; Locus Coeruleus ; metabolism ; physiology ; Mice ; Mitochondria ; metabolism ; Mitochondrial Proteins ; metabolism ; Oxidative Stress ; physiology ; Sirtuin 3 ; metabolism ; Sleep Deprivation ; Tyrosine ; metabolism