1.Anti-proliferation of human cervical cancer HeLa cell line by fascaplysin through apoptosis induction.
Xiao-Ling LU ; Yan-Ling ZHENG ; Hai-Min CHEN ; Xiao-Jun YAN ; Feng WANG ; Wei-Feng XU
Acta Pharmaceutica Sinica 2009;44(9):980-986
This study is to investigate the effect of fascaplysin on human cervical cancer cells (HeLa) in order to provide insights into the mechanisms of growth suppression involved in fascaplysin-mediated apoptosis. Cytotoxic activity of fascaplysin on HeLa cells was determined using MTT assay, cell cycle analysis, and apoptosis (Annexin V-FITC and PI double staining) studies. The role of the molecules in cell cycle regulation and apoptosis was analyzed by Western blotting and flow cytometry. Fascaplysin markedly inhibited HeLa cells proliferation in a dose-dependent manner, however, did not provoke G1 phase arrest in HeLa cells with downregulation of CDK4, cyclin D1 and CDK4-specific Ser795 pRb phosphorylation. Furthermore, fascaplysin induced significantly apoptosis evidenced by sub-G1 peak and Annexin V-FITC and PI double staining. The molecular mechanism of fascaplysin-induced apoptosis was characterized with the activation of caspase-3, -8, and -9, truncation of Bid, release of cytochrome c into cytosol, and down-regulation of Bcl-2 level. Fascaplysin exhibits anti-proliferation effect towards human cervical cancer HeLa cells through induction of apoptosis via extrinsic death pathway and mitochondrial pathway, but not arresting cell cycle progression at G1 phase. All together, these data sustain our contention that fascaplysin has anticancer properties and merits further investigation as a potential therapeutic agent.
Apoptosis
;
drug effects
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Proliferation
;
drug effects
;
HeLa Cells
;
Humans
;
Indoles
;
pharmacology
;
Mitochondria
;
metabolism
2.Assessment of mitochondrial toxicity induced by zidovudine and adefovir dipivoxil in rats.
Bin ZHU ; Zhen-ni ZHU ; Jun-zhong WANG ; Shun-mei HUANG ; Xue-mei FENG ; An-yi LI ; Dong-liang YANG ; Bao-ju WANG
Chinese Journal of Hepatology 2012;20(10):794-797
OBJECTIVETo explore the mitochondrial toxicities induced by zidovudine (AZT) and adefovir dipivoxil (ADV) antiviral drugs using a rat model system.
METHODSTwelve healthy Sprague-Dawley rats were randomly divided into three equal groups and treated by oral gavage with zidovudine (125 mg/kg/day), adefovir (40 mg/kg/day), or saline (equal volume) for 28 days. The rats' body weights were measured once a week, and blood was collected every two weeks for blood and biochemical tests. All animals were sacrificed at the end of treatment, and liver, kidney, skeletal muscle, and cardiac muscle were collected by necropsy. Mitochondria were isolated from the respective tissue samples, and the activities of respiratory chain complexes were measured. DNA was purified from each sample and the mitochondrial DNA (mtDNA) content was monitored by quantitative real time PCR. Mitochondrial morphology was analyzed under electron microscope.
RESULTSNo significant adverse effects, including body weight loss, abnormal blood or biochemistry, were observed in rats treated with AZT or ADV. The activities of mitochondrial cytochrome c oxidase in liver and cardiac muscle were slightly decreased in rats treated with AZT (liver: 9.44+/-3.09 vs. 17.8+/-12.38, P?=?0.21; cardiac muscle: 32.74+/-5.52 vs. 24.74+/-20.59, P?=?0.28; kidney: 4.42+/-1.53 vs. 14.45+/-13.75, P?=?0.18; skeletal muscle: 33.75+/-8.74 vs. 40.04+/-2.49, P?=?0.45). The mtDNA content was significantly decreased in cardiac muscle of AZT-treated rats (cardiac muscle: 0.15+/-0.13 vs. 0.32+/-0.42, P?=?0.85). The morphology of mitochondria in liver, kidney, skeletal muscle, and cardiac muscle was significantly altered in the AZT-treated rats and included disappearance of the outer membrane, severely damaged structure, and swollen or completely absent cristae. No obvious effects were noted in the ADV- or saline-treated rats.
CONCLUSIONSignificant adverse effects related to mitochondrial toxicity were observed in rats treated with AZT. The slightly decreased mtDNA content in ADV-treated rats may suggest that this antiviral drug can also cause mitochondrial toxic effects.
Adenine ; adverse effects ; analogs & derivatives ; Animals ; DNA, Mitochondrial ; drug effects ; Electron Transport Complex IV ; metabolism ; Female ; Kidney ; enzymology ; Liver ; enzymology ; Mitochondria ; drug effects ; metabolism ; Mitochondria, Heart ; drug effects ; Mitochondria, Liver ; drug effects ; Mitochondria, Muscle ; drug effects ; Muscle, Skeletal ; enzymology ; Myocardium ; enzymology ; Organophosphonates ; adverse effects ; Rats ; Rats, Sprague-Dawley ; Zidovudine ; adverse effects
3.Advances in apoptosis induced by biomaterials.
Keda WU ; Yuanliang WANG ; Jun PAN
Journal of Biomedical Engineering 2005;22(2):413-419
Biomedical materials are the biomaterials that, used in physiological system for diagnosis, treatment, plerosis or replacement of tissues and organs. Apoptosis, also known as PCD or ACD, is a normal physiological mechanism of cell in organism and a process of automatic cell death in which multicell organism modulates the development of organism and maintains the stability of internal environment. The human beings are able to understand the interaction between the material and organism at the molecular level due to the widely-used biomedical material and the development of material science, life science and biological technology. The research of that interaction is mainly focused on biocompatibility, while much attention has been drawn to the apoptosis induced by biomaterial concerning that apoptosis could be caused by inducing factor, and many therapies of diseases are closely related to inducing apoptosis. Based on the recent research advances of apoptosis in life science and the development of biomaterials, the pathways of apoptosis induced by biomaterials were reviewed; from the different views, the pathways of signal transduction of apoptosis include traditional pathway of signal transduction, the pathway of death receptor, and the pathway through mitochondrion. By the other way, the pathways of apoptosis caused by reactive oxygen species induced by biomaterials and apoptosis by affecting cell adhesion to biomaterials and so forth were discussed also. It indicates that the pathways to apoptosis due to biomaterials possess the characteristics of variety, intercrossing and multiplicity. It is essential for a research to inquire into the mechanism of apoptosis that is induced by biomaterials, and further into the manufacturing of biomaterials. This review is devoted to shedding light on the wide application of biomaterials in the therapy of human diseases, especially in the therapy of cancer that is closely related to apoptosis.
Apoptosis
;
drug effects
;
Biocompatible Materials
;
adverse effects
;
Cell Adhesion
;
drug effects
;
Humans
;
Materials Testing
;
Mitochondria
;
physiology
;
Signal Transduction
4.Progesterone induction keeps a balanced mitochondrial activity and a low ROS productivity in human sperm.
Yu-Ping FAN ; Jiang-Jing TANG ; Hui LU ; Yu-Chen ZHANG ; Jing-Ling RUAN ; Xiao-Ming TENG ; Yi-Bing HAN
National Journal of Andrology 2013;19(10):880-885
OBJECTIVETo observe the relative activity of sperm mitochondria and the proportion of ROS-positive sperm before and after capacitation and progesterone (Pg)-induced hyperactivation, and investigate the functional characteristics of sperm mitochondria.
METHODSWe collected 20 samples of normal human spermatozoa that met the criteria of WHO Laboratory Manual for the Examination and Processing of Human Semen (5th ed) and cultured them with the swim-up method in a CO2 incubator at 37 degrees C for 1 hour. We divided the sperm into a pre-capacitation and a capacitated group, and further incubated the capacitated sperm in an upright tube with (Pg-induced group) or without (control group) slow-releasing Pg at 37 degrees C for another hour. Then we determined the relative activity of mitochondria and the percentage of ROS-positive cells in the sperm samples using JC-1 and DCF staining.
RESULTSThe relative activities of mitochondria were significantly increased in the capacitated, control and Pg-induced groups (6.23, 14.36 and 12.33) as compared with the pre-capacitation group (1.42) (P < 0.05), while the percentages of balanced mitochondria (mitochondria with equal amount of high and low electric potentials) remarkably reduced (4.27%, 5.03% and 8.57% vs 21.64%, P < 0.05). The percentages of ROS-positive sperm in the pre-capacitation, capacitated, control and Pg-induced groups were 2.89%, 0.70%, 4.25% and 1.90%, respectively, significantly lower in the capacitated than in the pre-capacitation group (P < 0.01), but dramatically increased in the control group after another hour of swim-up incubation and markedly higher than in the Pg-induced group (P < 0.01).
CONCLUSIONProgesterone induction can hyperactive human sperm motility, inhibit the relative activity of mitochondria, keep mitochondria potential at a more balanced level, and reduce the production of ROS, which may help to raise the rate of in vitro fertilization and improve the quality of embryos.
Adult ; Humans ; Male ; Mitochondria ; drug effects ; metabolism ; Progesterone ; pharmacology ; Reactive Oxygen Species ; metabolism ; Spermatozoa ; drug effects ; physiology
5.High glucose impairs mitochondrial respiratory chain function in pancreatic beta cells.
Zhan LIN ; Yao-Ming XUE ; Jian-Ping SHA ; Rui-Rui MAO ; Ke LONG ; Dan SANG
Journal of Southern Medical University 2009;29(6):1251-1253
OBJECTIVETo investigate the effect of high glucose on mitochondrial respiratory chain function in INS-1 cells.
METHODSThe pancreatic beta cell line INS-1 was divided into the normal control (NC), high glucose (HG), and N-acetyl-L-cysteine (NAC) pretreatment groups, which were cultured for 72 h in the presence of 5.5 mmol/L glucose, 16.7 mmol/L glucose, and 16.7 mmol/L glucose with 1.0 mmol/L NAC, respectively. The activities of the enzyme complexes I and III of the respiratory chain in the cells were assessed with spectrophotometry, the ATP levels were examined using a luciferinluciferase kit, and insulin levels detected by radioimmunoassay.
RESULTSThe activities of the respiratory chain enzyme complexes I and III were 1.53-/+0.24 and 1.08-/+0.22 micromol.mg(-1).min(-1) in high glucose group, respectively, significantly lower than those in the normal control group (2.31-/+0.33 and 1.92-/+0.39 micromol.mg(-1).min(-1), P<0.01). ATP and insulin levels also decreased significantly in high glucose group as compared with those in the normal control group (P<0.01). The addition of NAC partially inhibited high glucose-induced decreases in the enzyme complex activities, ATP levels and insulin secretion (P<0.05).
CONCLUSIONThe respiratory chain function is positively correlated to insulin secretion in INS-1 cells, and exposure to high glucose causes impairment of the two enzyme complexes activities through oxidative stress, resulting in the mitochondrial respiratory chain dysfunction. High glucose-induced damages of the mitochondrial respiratory chain function can be partially inhibited by NAC.
Cell Respiration ; drug effects ; Cells, Cultured ; Glucose ; pharmacology ; Humans ; Insulin-Secreting Cells ; cytology ; physiology ; Mitochondria ; physiology ; Oxidative Stress ; drug effects
6.ATP-sensitive potassium channels: novel potential roles in Parkinson's disease.
Jie ZENG ; Gang WANG ; Sheng-Di CHEN
Neuroscience Bulletin 2007;23(6):370-376
The ATP-sensitive potassium (K(ATP)) channels which extensively distribute in diverse tissues (e.g. vascular smooth muscle, cardiac cells, and pancreas) are well-established for characteristics like vasodilatation, myocardial protection against ischemia, and insulin secretion. The aim of this review is to get insight into the novel roles of K(ATP) channels in Parkinson's disease (PD), with consideration of the specificities K(ATP) channels in the central nervous system (CNS), such as the control of neuronal excitability, action potential, mitochondrial function and neurotransmitter release.
Humans
;
KATP Channels
;
drug effects
;
physiology
;
Mitochondria
;
metabolism
;
Parkinson Disease
;
metabolism
;
therapy
7.Relationship between CD45 molecule expression and apoptotic sensitivity of myeloma cells.
Shang-Qin LIU ; Hui-Li CAI ; Qian LI ; Wen-Yu RONG ; Chao-Ping XU ; Zi MA
Chinese Journal of Hematology 2010;31(5):300-304
OBJECTIVETo investigate the effects of CD45 expression on induction of apoptosis in multiple myeloma cells.
METHODSMelphalan was used to induce myeloma cell line U266 apoptosis. Serum-free culture was used to induce CD45RB gene or empty plasmid transfected U266 apoptosis. The glucose-free culture was used to induce high CD45 (CD45(hi)) or low CD45 (CD45(low)) expression AMO1 apoptosis. Intraperitoneal inoculation was used to compare the survival of CD45(-) or CD45(+) U266 cells in mice. The number of apoptotic cells and mitochondrial membrane potential (MMP) was detected by flow cytometry. Western blotting was used to detect the cytochrome C release from mitochondrial and caspase-9 activation.
RESULTSMelphalan treatment induced 45% of CD45(+) and 30% of CD45(-) U266 cells apoptosis. Compared with the CD45(low) AMO1 cells, CD45(hi) cells were more susceptible to apoptosis. In serum-free culture for five days, 60% of CD45RB transferred U266 cells underwent apoptosis, while in the empty plasmid transfected ones, apoptotic cell number was not significantly increased. The survival time of CD45(-) U266 cells in the SCID-hIL-6 mice was 5 times that of CD45(+) cells. After melphalan treatment, 60% of the CD45(+) U266 cells lost MMP, while only 30% of CD45(-) U266 cells, and 10% of control cells did so. After UV irradiation, CD45(+) U266 cells mitochondria released more cytochrome C, leading to more caspase-9 activation.
CONCLUSIONCD45 expression is involved in mitochondria-mediated apoptotic process and increases apoptotic sensitivity of myeloma cells under a variety of stimulation.
Animals ; Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Mice, SCID ; Mitochondria ; Multiple Myeloma ; metabolism
8.Effect of iron supplementation on function of mitochondrial respiratory chain of liver in hypoxia training rats.
Chinese Journal of Applied Physiology 2015;31(3):263-265
Animals
;
Dietary Supplements
;
Electron Transport
;
Hypoxia
;
Iron
;
pharmacology
;
Liver
;
Mitochondria, Liver
;
drug effects
;
Rats
9.Experimental pathological study of acute intoxication by Chloranthus serratus Roem. Et Schalt.
Wu ZHANG ; Jian-hua ZHU ; Li-bao CHENG ; Yong-hong LI
Journal of Forensic Medicine 2006;22(1):15-17
OBJECTIVE:
To find out the pathological change and the toxic mechanism of Chloranthus serratus Roem. et Schalt in mice.
METHODS:
Mice were intoxicated by oral administration with extracts of Chloranthus serratus Roem. et Schalt followed by pathological, serum biochemical, and coagulation mechanism examination.
RESULTS:
The LD50 in mice was 41.12 g/kg; All poisoned mice serum BUN and ALT increased markedly; Thrombocyte decreased and coagulation time increased; The organ index of liver, spleen and kidneys increased significantly; The cells of liver, kidney and heart were degeneration and necrosis, There were extensive hyperemia and hemorrhage in many organs.
CONCLUSION
The experiment suggests that the target organs were liver, kidney, heart and blood vessels; The toxic mechanism was the damage on the mitochondrional, endoplasmic reticulum and coagulation system.
Animals
;
Biomarkers/blood*
;
Dose-Response Relationship, Drug
;
Endoplasmic Reticulum/drug effects*
;
Female
;
Forensic Pathology
;
Kidney/pathology*
;
Lethal Dose 50
;
Liver/pathology*
;
Magnoliopsida/chemistry*
;
Male
;
Mice
;
Mitochondria, Heart/drug effects*
;
Mitochondria, Liver/drug effects*
;
Myocardium/pathology*
;
Plant Extracts/toxicity*
;
Random Allocation
10.Interventions to improve chronic cyclosporine A nephrotoxicity through inhibiting renal cell apoptosis: a systematic review.
Zheng XIAO ; Cheng-wen LI ; Juan SHAN ; Lei LUO ; Li FENG ; Jun LU ; Sheng-fu LI ; Dan LONG ; You-ping LI
Chinese Medical Journal 2013;126(19):3767-3774
OBJECTIVETo reveal interventions for chronic cyclosporine A nephrotoxicity (CCN) and provide new targets for further studies, we analyzed all relevant studies about interventions in renal cell apoptosis.
DATA SOURCESWe collected all relevant studies about interventions for cyclosporine A (CsA)-induced renal cell apoptosis in Medline (1966 to July 2010), Embase (1980 to July 2010) and ISI (1986 to July 2010), evaluated their quality, extracted data following PICOS principles and synthesized the data.
STUDY SELECTIONWe included all relevant studies about interventions in CsA-induced renal cell apoptosis no limitation of research design and language) and excluded the duplicated articles, meeting abstracts and reviews without specific data.
RESULTSThere were three kinds of intervention, include anti-oxidant (sulfated polysaccharides, tea polyphenols, apigenin, curcumin, spirulina, etc), biologics (recombinant human erythropoietin (rhEPO), a murine pan-specific transforming growth factor (TGF)-beta-neutralizing monoclonal antibody1D11, cartilage oligomeric matrix protein (COMP)-angiopoietin-1 and hepatocyte growth factor (HGF) gene), and other drugs (spironolactone, rosiglitazone, pirfenidone and colchicine). These interventions significantly improved the CCN, renal cell apoptosis and renal dysfunction through intervening in four apoptotic pathways in animals or protected renal cells from apoptosis induced by CsA and increased cell survival through respectively four pathways in vitro.
CONCLUSIONSThere are three group interventions for CCN. Especially anti-oxidant drugs can significantly improve CCN, renal cell apoptosis and renal dysfunction. Many drugs can improve CCN through intervening in Fas/Fas ligand or mitochondrial pathway with sufficient evidences. Angiotensin II, nitric oxide (NO) and endoplasmic reticulum (ER) pathways will be new targets for CCN.
Animals ; Apoptosis ; drug effects ; Chronic Disease ; Cyclosporine ; adverse effects ; Humans ; Immunosuppressive Agents ; adverse effects ; Kidney ; drug effects ; pathology ; Mitochondria ; physiology ; Nitric Oxide ; physiology ; Signal Transduction ; fas Receptor ; physiology