1.Mitochondrial cytochrome C oxidase and tumorigenesis.
Xiao ZHOU ; Ai-lan CHENG ; Run-liang GAN
Chinese Journal of Pathology 2012;41(6):425-427
Apoptosis
;
Down-Regulation
;
Electron Transport Complex IV
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Mitochondria
;
metabolism
;
Mutation
;
Neoplasms
;
genetics
;
metabolism
;
pathology
2.Effect of curcumin on oligomer formation and mitochondrial ATP-sensitive potassium channels induced by overexpression or mutation of α-synuclein.
Tao CHEN ; Yidong DENG ; Xiaoping LIAO ; Jiannong ZHAO ; Guoqiang WEN ; Guohu WENG ; Fei MA ; Yingying ZHENG
Chinese Journal of Medical Genetics 2015;32(4):462-467
OBJECTIVETo investigate the effect of curcumin on oligomer formation and mitochondrial ATP-sensitive potassium channels (mitoKATP) induced by overexpression or mutation of α-synuclein.
METHODSRecombinant plasmids α-synuclein-pEGFP-A53T and α-synuclein-pEGFP-WT were transfected into PC12 cells by lipofectamin method, and intervened by application of curcumin (20 μmol/L) and 5-hydroxydecanoate (5-HD). Oligomer formation in the cultured cells was identified by Western blotting and Dot blotting. Cytotoxicity and apoptosis of the PC12 cells were measured by lactate dehydrogenase (LDH) and JC-1 assays. mitoKATP were identified by Western blotting and whole cell patch clamp.
RESULTSCurcumin has significantly reduced the oligomer formation induced by overexpression or mutation of α-synuclein in the cultured cells. LDH has decreased by 36.3% and 23.5%, and red/green fluorescence ratio of JC-1 was increased respectively by 48.46% and 50.33% after application of curcumin (P<0.05). Protein expression of Kir6.2 has decreased and mitoKATP channel current has significantly increased (P<0.05).
CONCLUSIONCurcumin can inhibit α-synuclein gene overexpression or mutation induced α-synuclein oligomers formation. It may block apoptosis induced by wild-type overexpression or mutation of α-synuclein. By stabilizing mitochondrial membrane potential. Opening of mitoKATP channel may have been the initiating protective mechanism of apoptosis induced by wild-type overexpression or mutation of α-synuclein. Curcumin may antagonize above cytotoxicity through further opening the mitoKATP channel.
Animals ; Apoptosis ; drug effects ; Cell Line ; Curcumin ; pharmacology ; Humans ; KATP Channels ; chemistry ; genetics ; metabolism ; Mitochondria ; drug effects ; genetics ; metabolism ; Mutation ; drug effects ; PC12 Cells ; Parkinson Disease ; drug therapy ; genetics ; metabolism ; physiopathology ; Rats ; alpha-Synuclein ; genetics
3.PCR-mtDNA for detecting components of duck origin in foodstuff and feedstuff.
Juan ZHANG ; Hui ZONG ; Liping ZHANG
Chinese Journal of Biotechnology 2008;24(10):1832-1836
Mitochondrial cytochrome oxidase III (COIII) of duck was successfully amplified by PCR-mtDNA with duck muscle DNA as the template (GenBank Accession No. DQ655706). Cloning sequence analysis shows that the 784 bp nucleotides of COIII gene were contained. Through homology analysis, we confirmed that the cytochrome oxidase III (COIII) was relatively conservative. The method of PCR-mtDNA can be designed to detect the components of duck origin. And then, the method of PCR can be applied to amplify with the muscle DNA of various animal and feedstuff as the template, repeated verification, the primer (P3, P4) with strong specificity and good stability is screened, which can only amplify the sequence of duck. The special sequence contains 226 bp, the amplified product of 226 bp was sequenced and analyzed, it showed 100% homology with duck mtDNA COIII gene, which proved the accuracy of the special primer. The test that used different concentration of DNA with P3 and P4 is the sensitive experiment by PCR. The result showed that the primer has much specialty and rather sensitivity. So it is a way to detect the duck origin in the muscle of various animal and feedstuff.
Animal Feed
;
analysis
;
Animals
;
DNA Primers
;
genetics
;
metabolism
;
DNA, Mitochondrial
;
genetics
;
metabolism
;
Ducks
;
genetics
;
Electron Transport Complex IV
;
genetics
;
Mitochondria, Muscle
;
genetics
;
Muscle, Skeletal
;
chemistry
;
Polymerase Chain Reaction
;
methods
;
Sensitivity and Specificity
4.Proteomic analysis of human cerebral cortex in epileptic patients.
Jong Pil EUN ; Ha Young CHOI ; Yong Geun KWAK
Experimental & Molecular Medicine 2004;36(2):185-191
Epilepsy affects more than 0.5% of the world population and is known to be associated with a large genetic component eliciting an electrical hyperexcitability in the central nervous system. However, its pathogenic mechanisms remain poorly understood. In order to gain greater molecular incite in the pathogenesis in epilepsy, we analyzed proteomes of human cerebral cortices. Quantitative proteome analysis was used to compare signals corresponding to individual proteins between epileptic cerebral cortices from patients with temporal lobe epilepsy and age-matched non-epileptic subjects. To minimize individual variations, gender and age of the patients were matched. Changes of several spots were consistent among 6 pairs of epileptic patients and nonepileptic subjects. One of the spots was identified as the mitochondrial type Mn-superoxide dismutase (Mn-SOD) confirmed by Western blot analysis with Mn-SOD antibody and enzyme activity assay. Such results were agreeable with chemical and physical parameters given by the 2-dimensional electrophoresis (2-DE) gel. Mn-SOD was consistently down-regulated in epileptic cerebral cortices compared with those of nonepileptic subjects. Our results demonstrate a clear link between pathogenesis of epilepsy and SOD. Additionally, we identified four proteins that were consistently over-expressed in all epileptic temporal neocortices specimens and the other four proteins that were found to be expressed less than non-epileptic control subjects. These proteomic data provide cellular markers in the understanding mechanism of the epilepsy pathogenesis.
Adult
;
Biological Markers/analysis
;
Brain Chemistry
;
Case-Control Studies
;
Cerebral Cortex/chemistry/*metabolism
;
Down-Regulation
;
Electrophoresis, Gel, Two-Dimensional
;
Epilepsy/genetics/*metabolism
;
Female
;
Humans
;
Male
;
Middle Aged
;
Mitochondria/chemistry/genetics/*metabolism
;
Nerve Tissue Proteins/chemistry/genetics/*metabolism
;
Proteomics
;
Research Support, Non-U.S. Gov't
;
Superoxide Dismutase/analysis/genetics/*metabolism
;
Up-Regulation
5.Identification and Molecular Characterization of Parkin in Clonorchis sinensis.
Xuelian BAI ; Tae Im KIM ; Ji Yun LEE ; Fuhong DAI ; Sung Jong HONG
The Korean Journal of Parasitology 2015;53(1):65-75
Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to Zn2+ were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.
Amino Acid Sequence
;
Animals
;
Clonorchis sinensis/*enzymology
;
Cluster Analysis
;
Conserved Sequence
;
DNA, Complementary/genetics
;
Energy Metabolism
;
Gene Expression Profiling
;
Mitochondria/metabolism
;
Models, Molecular
;
Molecular Weight
;
Phylogeny
;
Protein Conformation
;
Sequence Homology, Amino Acid
;
Ubiquitin-Protein Ligases/chemistry/*genetics/*metabolism
6.Identification and Molecular Characterization of Parkin in Clonorchis sinensis.
Xuelian BAI ; Tae Im KIM ; Ji Yun LEE ; Fuhong DAI ; Sung Jong HONG
The Korean Journal of Parasitology 2015;53(1):65-75
Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to Zn2+ were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.
Amino Acid Sequence
;
Animals
;
Clonorchis sinensis/*enzymology
;
Cluster Analysis
;
Conserved Sequence
;
DNA, Complementary/genetics
;
Energy Metabolism
;
Gene Expression Profiling
;
Mitochondria/metabolism
;
Models, Molecular
;
Molecular Weight
;
Phylogeny
;
Protein Conformation
;
Sequence Homology, Amino Acid
;
Ubiquitin-Protein Ligases/chemistry/*genetics/*metabolism
7.Cloning of BNIP3h, a member of proapoptotic BNIP3 family genes.
Mohammad FAROOQ ; Young Hee KIM ; Sang Uk IM ; Eun Jung CHUNG ; Sun Young HWANG ; Mi Young SOHN ; Moon Kyu KIM ; Jung Chul KIM
Experimental & Molecular Medicine 2001;33(3):169-173
Apoptosis is regulated by interaction of antiapoptotic Bcl-2 family proteins with various proapoptotic proteins, several of which are also members of the Bcl-2 family. BNIP3 (formerly NIP3) is a proapoptotic mitochondrial protein classified in the Bcl-2 family based on limited sequence homology-3 (BH3) domain and COOH-terminal transmembrane domain. Sequence comparison of BNIP3 has indicated that there are several BNIP3 human homologs of this protein, like BNIP3L, Nix and BNIP3. We have cloned a new member of BNIP3 family from the cDNA library prepared from human dermal papilla cells and designated as BNIP3h. BNIP3h shows substantial homology with other BNIP3 family proteins. BNIP3h induced apoptosis from 24 hours after transfection in MCF7 cell lines and its apoptosis inducing activity is extended until 72 hours after transfection.
Amino Acid Sequence
;
Apoptosis/*physiology
;
Base Sequence
;
Cells, Cultured
;
Cloning, Molecular
;
Dermis/chemistry/cytology
;
Human
;
Membrane Proteins/chemistry/*genetics/metabolism
;
Mitochondria/chemistry
;
Molecular Sequence Data
;
Multigene Family
;
Sequence Alignment
;
Tissue Distribution
;
Transfection
;
Tumor Cells, Cultured
8.Activation of the intrinsic mitochondrial apoptotic pathway in swine influenza virus-mediated cell death.
Young Ki CHOI ; Tae Kyung KIM ; Chul Joong KIM ; Joong Seob LEE ; Se Young OH ; Han Soo JOO ; Douglas N FOSTER ; Ki Chang HONG ; Seungkwon YOU ; Hyunggee KIM
Experimental & Molecular Medicine 2006;38(1):11-17
The mitochondrial pathway of swine influenza virus (SIV)-induced apoptosis was investigated using porcine kidney (PK-15) cells, swine testicle (ST) cells, and HeLa cervical carcinoma cells which are known not to support viral replication. As judged by cell morphology, annexin V staining, and DNA fragmentation, PK-15 and ST cells infected with three different subtypes of SIV (H1N1, H3N2, and H1N2) were obviously killed by apoptosis, not necrosis. SIV infection in PK-15 and HeLa cells was shown to decrease the cellular levels of Bcl-2 protein compared to that of mock-infected control cells at 24 h post-infection, whereas expression levels of Bax protein increased in the PK-15 cells, but did not increase in HeLa cells by SIV infection. Cytochrome c upregulation was also observed in cytosolic fractions of the PK-15 and HeLa cells infected with SIV. Apoptosome (a multi-protein complex consisting of cytochrome c, Apaf-1, caspase-9, and ATP) formation was confirmed by immunoprecipitation using cytochrome c antibody. Furthermore, SIV infection increased the cellular levels of TAJ, an activator of the JNK-stressing pathway, and the c-Jun protein in the PK-15 and HeLa cells. Taken together, these results suggest that the mitochondrial pathway should be implicated in the apoptosis of PK-15 cells induced by SIV infection.
Animals
;
Annexin A5/metabolism
;
*Apoptosis
;
Blotting, Western
;
Cell Fractionation
;
Cell Line
;
Comparative Study
;
Cytochrome c Group/metabolism
;
Cytosol/chemistry
;
DNA Fragmentation
;
Enzyme Activation
;
Gene Expression Regulation, Viral
;
Hela Cells
;
Humans
;
Influenza A virus/*physiology
;
Kinetics
;
Mitochondria/metabolism/*physiology
;
Precipitin Tests
;
Proto-Oncogene Proteins c-bcl-2/genetics/metabolism
;
Research Support, Non-U.S. Gov't
;
Swine
;
bcl-2-Associated X Protein/genetics/metabolism
9.Protective effects of Sini decoction on adriamycin-induced heart failure and its mechanism: role of superoxide dismutase.
Ming-Qi ZHAO ; Wei-Kang WU ; Dan-Yang ZHAO ; Yan LIU ; Ying LIU ; Tian-Wen LIANG ; Han-Chuan LUO
China Journal of Chinese Materia Medica 2005;30(14):1111-1114
OBJECTIVETo investigate the role of superoxide dismutase (SOD) in Adriamycin (ADR)-induced heart failure and the protective effects of Sini decoction (SND).
METHODSD rats were randomly divided into three groups, control group, heart failure group and SND group. ADR was injected in the rats of heart failure group and SND group by caudal vein. After injection, the rats in SND group were given SND (3.75 g x kg(-1) x d(-1), p.o.). Three weeks later, cardiac function, content of malondialdehyde (MDA) of both myocardium and mitochondria and activity of Cu-Zn SOD and Mn SOD were measured. The mRNA expression of Cu-Zn SOD and Mn SOD were also detected by RT-PCR.
RESULTCompared with control group, LVSP and +/- dp/dt max were obviously decreased, while LVEDP was markedly increased in the heart failure group. The mRNA expression and the activity of Cu-Zn SOD and Mn SOD in heart failure group were obviously lower than that in the controls'. In addition, the MDA content of both myocardium and mitochondria were clearly increased in heart failure rats. In SND-treated rats, the cardiac function, the activity and the mRNA expression of Cu-Zn SOD and Mn SOD were significantly elevated and the content of MDA was reduced, which had no statistic difference with the rats in control group.
CONCLUSIONThe data suggest that oxidative stress is present in the mitochondria of myocardium in ADR-induced heart failure rats and it can be eased by SND. The mechanism may be closely related to SOD.
Animals ; Doxorubicin ; Drug Combinations ; Drugs, Chinese Herbal ; isolation & purification ; pharmacology ; Heart Failure ; chemically induced ; metabolism ; physiopathology ; Heart Function Tests ; Male ; Malondialdehyde ; metabolism ; Mitochondria, Heart ; metabolism ; Myocardium ; metabolism ; Myocytes, Cardiac ; metabolism ; Oxidative Stress ; drug effects ; Plants, Medicinal ; chemistry ; RNA, Messenger ; biosynthesis ; genetics ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Superoxide Dismutase ; biosynthesis ; genetics
10.Alteration of mitochondrial distribution and gene expression of fission 1 protein in cortical neurons of rats with chronic fluorosis.
Di-dong LOU ; Kai-lin ZHANG ; Shuang-li QIN ; Yan-fei LIU ; Yan-ni YU ; Zhi-zhong GUAN
Chinese Journal of Pathology 2012;41(4):243-247
OBJECTIVETo investigate the changes of mitochondrial distribution in axon/soma and the expression of mitochondrial fission 1 (Fis1) protein in the cortical neurons of rats with chronic fluorosis.
METHODSSixty SD rats were divided into 3 groups (20 each) according to weight hierarchy and fed with different concentrations of fluoride in drinking water (0, 10 and 50 mg/L, respectively) for 6 months. Images of mitochondria and tubulin labeled by immunofluorescence COXIV and tubulin-α were captured with fluorescence microscope. Fis1 protein expression in cortical neurons was analyzed with immunohistochemistry and Western blot. The expression of Fis1 mRNA was detected with real-time PCR.
RESULTSVarying degrees of dental fluorosis and increased fluoride contents in urine were observed in the rats receiving additional fluoride in drinking water. In the cortical neurons of rats fed with 10 mg/L and 50 mg/L fluoride, the numbers of neuronal soma stained with COXIV(34.8 ± 4.7 and 39.3 ± 3.0, respectively), and the expression of Fis1 protein (immunohistochemistry: 54.0 ± 3.6 and 51.3 ± 4.1, respectively; Western blot: 2.9 ± 0.4 and 2.6 ± 0.6, respectively) and mRNA (3773 ± 1292 and 1274 ± 162, respectively) was markedly increased as compared with controls (4.4 ± 2.3, 25.2 ± 2.5, 1.8 ± 0.2 and 277 ± 73) over the experimental period of 6 months.
CONCLUSIONSExcessive intake of fluoride results in an altered mitochondrial distribution in axon and soma in cortical neurons (i.e., the increase in soma and the decrease in axon), increased expression of Fis1 gene and enhanced mitochondrial fission. The altered mitochondrial distribution may be related to the high expression level of Fis1 and a functional disorder of mitochondria.
Animals ; Axons ; pathology ; Cerebral Cortex ; metabolism ; Drinking Water ; adverse effects ; chemistry ; Electron Transport Complex IV ; metabolism ; Female ; Fluorides ; adverse effects ; urine ; Fluorosis, Dental ; etiology ; metabolism ; pathology ; Male ; Mitochondria ; pathology ; Mitochondrial Dynamics ; drug effects ; Mitochondrial Proteins ; genetics ; metabolism ; Neurons ; metabolism ; RNA, Messenger ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Tubulin ; metabolism