1.Reprogramming of Cancer Cells into Induced Pluripotent Stem Cells Questioned
Jin Seok BANG ; Na Young CHOI ; Minseong LEE ; Kisung KO ; Yo Seph PARK ; Kinarm KO
International Journal of Stem Cells 2019;12(3):430-439
BACKGROUND AND OBJECTIVES: Several recent studies have claimed that cancer cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, in most cases, cancer cells seem to be resistant to cellular reprogramming. Furthermore, the underlying mechanisms of limited reprogramming in cancer cells are largely unknown. Here, we identified the candidate barrier genes and their target genes at the early stage of reprogramming for investigating cancer reprogramming.METHODS: We tried induction of pluripotency in normal human fibroblasts (BJ) and both human benign (MCF10A) and malignant (MCF7) breast cancer cell lines using a classical retroviral reprogramming method. We conducted RNA-sequencing analysis to compare the transcriptome of the three cell lines at early stage of reprogramming.RESULTS: We could generate iPSCs from BJ, whereas we were unable to obtain iPSCs from cancer cell lines. To address the underlying mechanism of limited reprogramming in cancer cells, we identified 29 the candidate barrier genes based on RNA-sequencing data. In addition, we found 40 their target genes using Cytoscape software.CONCLUSIONS: Our data suggest that these genes might one of the roadblock for cancer cell reprogramming. Furthermore, we provide new insights into application of iPSCs technology in cancer cell field for therapeutic purposes.
Breast Neoplasms
;
Cell Line
;
Cellular Reprogramming
;
Fibroblasts
;
Humans
;
Induced Pluripotent Stem Cells
;
Methods
;
Transcriptome
;
Zidovudine
2.Extraction and Characterization of Human Adipose Tissue-Derived Collagen: Toward Xeno-Free Tissue Engineering
Minseong KIM ; MyungGu YEO ; KyoungHo LEE ; Min-Jeong PARK ; Gyeongyeop HAN ; Chansong LEE ; Jihyo PARK ; Bongsu JUNG
Tissue Engineering and Regenerative Medicine 2024;21(1):97-109
BACKGROUND:
Collagen is a key component of connective tissue and has been frequently used in the fabrication of medical devices for tissue regeneration. Human-originated collagen is particularly appealing due to its low immune response as an allograft biomaterial compared to xenografts and its ability to accelerate the regeneration process. Ethically and economically, adipose tissues available from liposuction clinics are a good resource to obtain human collagen.However, studies are still scarce on the extraction and characterization of human collagen, which originates from adipose tissue. The aim of this study is to establish a novel and simple method to extract collagen from human adipose tissue, characterize the collagen, and compare it with commercial-grade porcine collagen for tissue engineering applications.
METHODS:
We developed a method to extract the collagen from human adipose tissue under quasi-Good Manufacturing Practice (GMP) conditions, including freezing the tissue, blood removal, and ethanol-based purification. Various techniques, including protein quantification, decellularization assessment, SDS-PAGE, FTIR, and CD spectroscopy analysis, were used for characterization. Amino acid composition was compared with commercial collagen. Biocompatibility and cell proliferation tests were performed, and in vitro tests using collagen sponge scaffolds were conducted with statistical analysis.
RESULTS:
Our results showed that this human adipose-derived collagen was equivalent in quality to commercially available porcine collagen. In vitro testing demonstrated high cell attachment and the promotion of cell proliferation.
CONCLUSION
In conclusion, we developed a simple and novel method to extract and characterize collagen and extracellular matrix from human adipose tissue, offering a potential alternative to animal-derived collagen for xeno-free tissue engineering applications.