1.Liver organoids: Current advances and future applications for hepatology
Yohan KIM ; Minseok KANG ; Michael Girma MAMO ; Michael ADISASMITA ; Meritxell HUCH ; Dongho CHOI
Clinical and Molecular Hepatology 2025;31(Suppl):S327-S348
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
2.Animal models for transplant immunology:bridging bench to bedside
Minseok KANG ; Hwon Kyum PARK ; Kyeong Sik KIM ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):354-376
The progress of transplantation has been propelled forward by animal experiments.Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
3.Animal models for transplant immunology:bridging bench to bedside
Minseok KANG ; Hwon Kyum PARK ; Kyeong Sik KIM ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):354-376
The progress of transplantation has been propelled forward by animal experiments.Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
4.Animal models for transplant immunology:bridging bench to bedside
Minseok KANG ; Hwon Kyum PARK ; Kyeong Sik KIM ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):354-376
The progress of transplantation has been propelled forward by animal experiments.Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
5.Liver organoids: Current advances and future applications for hepatology
Yohan KIM ; Minseok KANG ; Michael Girma MAMO ; Michael ADISASMITA ; Meritxell HUCH ; Dongho CHOI
Clinical and Molecular Hepatology 2025;31(Suppl):S327-S348
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
6.Liver organoids: Current advances and future applications for hepatology
Yohan KIM ; Minseok KANG ; Michael Girma MAMO ; Michael ADISASMITA ; Meritxell HUCH ; Dongho CHOI
Clinical and Molecular Hepatology 2025;31(Suppl):S327-S348
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
7.Animal models for transplant immunology:bridging bench to bedside
Minseok KANG ; Hwon Kyum PARK ; Kyeong Sik KIM ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):354-376
The progress of transplantation has been propelled forward by animal experiments.Animal models have not only provided opportunities to understand complex immune mechanisms in transplantation but also served as a platform to assess therapeutic interventions. While small animals have been instrumental in uncovering new therapeutic concepts related to immunosuppression and immune tolerance, the progression to human trials has largely been driven by studies in large animals. Recent research has begun to explore the potential of porcine organs to address the shortage of available organs. The consistent progress in transplant immunology research can be attributed to a thorough understanding of animal models. This review provides a comprehensive overview of the available animal models, detailing their modifications, strengths, and weaknesses, as well as their historical applications, to aid researchers in selecting the most suitable model for their specific research needs.
8.Phase 1 Study of No-Carrier Added 177Lu-DOTATATE (SNU-KB-01) in Patients with Somatostatin Receptor–Positive Neuroendocrine Tumors: The First Clinical Trial of Peptide Receptor Radionuclide Therapy in Korea
Hyun Gee RYOO ; Minseok SUH ; Keon Wook KANG ; Dae-Won LEE ; Sae-Won HAN ; Gi Jeong CHEON
Cancer Research and Treatment 2023;55(1):334-343
Purpose:
To provide a wider choice of treatment opportunities for patients with neuroendocrine tumor (NET) in Korea, we have conducted a phase 1, open-label, single-arm, dose-escalation study of SNU-KB-01, a no-carrier added (NCA) 177Lu-labeled DOTATATE.
Materials and Methods:
Seven patients with inoperable, progressive, metastatic, or locally advanced, somatostatin receptor-positive NET with Ki67 index ≤ 20% were enrolled according to the rolling six design. The study consisted of two cohorts to receive 4 cycles of SNU-KB-01 every 8 weeks for the first dose of 5.55 GBq (n=3) and 7.40 GBq (n=4). We assessed the incidence of dose-limiting toxicity (DLT) and adverse event, absorbed dose of kidneys and bone marrow, and objective tumor response.
Results:
Seven patients completed 4 cycles (21.3-30.1 GBq total dose) of SNU-KB-01. The mean absorbed doses to kidneys and bone marrow were 0.500 mGy/MBq and 0.053 mGy/MBq, respectively, and the total body effective dose was 0.115 mSv/MBq. No DLT was observed and the maximum tolerated dose was 7.40 GBq/cycle. Grade 3 thrombocytopenia occurred in one patient, but no other grade 3 or 4 major hematologic or renal toxicity was observed. The best objective response to SNU-KB-01 was partial response. Overall response rate was 42.9% and disease control rate was 85.7%.
Conclusion
Treatment with 4 cycles of SNU-KB-01 was well tolerated and resulted in control of disease in most of the patients. Our results indicate SNU-KB-01, an NCA 177Lu-labeled DOTATATE, as a potentially safe and efficacious treatment option for NET patients in Korea.
9.Usefulness of Allogenic Acellular Dermal Matrix for Prevention of Scalp Depressio
Min-Gyu CHOI ; Minseok LEE ; Sang-Jun SUH ; Yoon-Soo LEE ; Jeong-Ho LEE ; Dong-Gee KANG
Korean Journal of Neurotrauma 2020;16(2):174-180
Objective:
Burr hole trephination is a common treatment for chronic subdural hematoma, intracranial hematoma, and intraventricular hematoma due to its effective drainage of hematoma, minimal invasiveness and short operation time. However, cosmetic complications such as scalp depression can occur. The aim of this study was to evaluate the usefulness of an allogenic acellular dermal matrix (ADM) to prevent scalp depression at the burr hole site.
Methods:
A retrospective analysis was performed with 75 cases in 66 patients who were treated with burr hole trephination from January 2018 to December 2019. These cases divided into 2 groups; based on the method used to cover the burr hole site: Gelfoam packing only (GPO) and ADM. The degree of the scalp depression was measured from the more recent follow-up brain computed tomography scan.
Results:
There was a significant difference in the degree of scalp depression between GPO and ADM groups (p=0.003). No significant correlation between patient's age and the degree of scalp depression (GPO: p=0.419, ADM: p=0.790). There were no wound infection complication in either group.
Conclusion
ADM is a suitable material to prevent scalp depression after burr hole trephination.
10.Beyond the icebox: modern strategies in organ preservation for transplantation
Kidus Haile YEMANEBERHAN ; Minseok KANG ; Jun Hwan JANG ; Jin Hee KIM ; Kyeong Sik KIM ; Ho Bum PARK ; Dongho CHOI
Clinical Transplantation and Research 2024;38(4):377-403
Organ transplantation, a critical treatment for end-stage organ failure, has witnessed significant advancements due to the integration of improved surgical techniques, immunosuppressive therapies, and donor-recipient matching. This review explores the progress of organ preservation, focusing on the shift from static cold storage (SCS) to advanced machine perfusion techniques such as hypothermic (HMP) and normothermic machine perfusion (NMP). Although SCS has been the standard approach, its limitations in preserving marginal organs and preventing ischemia-reperfusion injury (IRI) have led to the adoption of HMP and NMP. HMP, which is now the gold standard for high-risk donor kidneys, reduces metabolic activity and improves posttransplant outcomes. NMP allows real-time organ viability assessment and reconditioning, especially for liver transplants. Controlled oxygenated rewarming further minimizes IRI by addressing mitochondrial dysfunction. The review also highlights the potential of cryopreservation for long-term organ storage, despite challenges with ice formation. These advances are crucial for expanding the donor pool, improving transplant success rates, and addressing organ shortages. Continued innovation is necessary to meet the growing demands of transplantation and save more lives.