1.Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics
Nuclear Medicine and Molecular Imaging 2018;52(6):407-419
Brain disease is one of the greatest threats to public health. Brain theranostics is recently taking shape, indicating the treatments of stroke, inflammatory brain disorders, psychiatric diseases, neurodevelopmental disease, and neurodegenerative disease. However, several factors, such as lack of endophenotype classification, blood-brain barrier (BBB), target determination, ignorance of biodistribution after administration, and complex intercellular communication between brain cells, make brain theranostics application difficult, especially when it comes to clinical application. So, a more thorough understanding of each aspect is needed. In this review, we focus on recent studies regarding the role of exosomes in intercellular communication of brain cells, therapeutic effect of graphene quantum dots, transcriptomics/epitranscriptomics approach for target selection, and in vitro/in vivo considerations.
Blood-Brain Barrier
;
Brain Diseases
;
Brain
;
Classification
;
Endophenotypes
;
Exosomes
;
Graphite
;
Neurodegenerative Diseases
;
Public Health
;
Quantum Dots
;
Stroke
;
Theranostic Nanomedicine
2.Current Status of PSMA‑Targeted Radioligand Therapy in the Era of Radiopharmaceutical Therapy Acquiring Marketing Authorization
So Won OH ; Minseok SUH ; Gi Jeong CHEON
Nuclear Medicine and Molecular Imaging 2022;56(6):263-281
Prostate-specific membrane antigen (PSMA) is highly expressed in PCa, which gradually increases in high-grade tumors, metastatic tumors, and tumors nonresponsive to androgen deprivation therapy. PSMA has been a topic of interest during the past decade for both diagnostic and therapeutic targets. Radioligand therapy (RLT) utilizes the delivery of radioactive nuclides to tumors and tumor-associated targets, and it has shown better efficacy with minimal toxicity compared to other systemic cancer therapies. Nuclear medicine has faced a new turning point claiming theranosis as the core of academic identity, since new RLTs have been introduced to clinics through the official new drug development processes for approval from the Food and Drug Administration (FDA) or European Medical Agency. Recently, PSMA targeting RLT was approved by the US FDA in March 2022. This review introduces PSMA RLT focusing on ongoing clinical trials to enhance our understanding of nuclear medicine theranosis and strive for the development of new radiopharmaceuticals.
3.Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics
Nuclear Medicine and Molecular Imaging 2018;52(6):407-419
Brain disease is one of the greatest threats to public health. Brain theranostics is recently taking shape, indicating the treatments of stroke, inflammatory brain disorders, psychiatric diseases, neurodevelopmental disease, and neurodegenerative disease. However, several factors, such as lack of endophenotype classification, blood-brain barrier (BBB), target determination, ignorance of biodistribution after administration, and complex intercellular communication between brain cells, make brain theranostics application difficult, especially when it comes to clinical application. So, a more thorough understanding of each aspect is needed. In this review, we focus on recent studies regarding the role of exosomes in intercellular communication of brain cells, therapeutic effect of graphene quantum dots, transcriptomics/epitranscriptomics approach for target selection, and in vitro/in vivo considerations.
9.Multidisciplinary Team Approach in Prostate-Specific Membrane Antigen Theranostics for Prostate Cancer: A Narrative Review
Journal of Urologic Oncology 2024;22(1):11-20
In managing prostate cancer, the integration of multidisciplinary team (MDT) with prostate-specific membrane antigen (PSMA) theranostics marks a significant advancement, addressing the disease's spectrum from indolent forms to aggressive metastatic stages. MDTs, comprising urology, oncology, radiation oncology, pathology, radiology, and nuclear medicine experts, are pivotal in delivering tailored, evidence-based care, essential for the varied clinical presentations of prostate cancer. The introduction of PSMA-targeted theranostics and PSMA positron emission tomography imaging has impacted the approach to diagnosis and treatment, offering enhanced precision in disease localization and enabling more nuanced management strategies for conditions such as oligometastatic prostate cancer, metastatic hormone-sensitive prostate cancer, and metastatic castration-resistant prostate cancer. The collaborative approach of MDTs in utilizing PSMA-targeted radioligand therapy emphasizes meticulous patient selection, predictive assessment of therapy response, and careful management of therapy-related toxicities. Additionally, recent strategies, including combination therapies from ENZA-P and Lu-PARP trials, show potential for improving treatment efficacy. This unified approach showcases the critical role of MDTs in optimizing treatment outcomes, underscoring the importance of collaboration in advancing the treatment of prostate cancer with PSMAtargeted therapies, thereby setting a new paradigm in personalized prostate cancer management.
10.Brain Glymphatic/Lymphatic Imaging by MRI and PET
Dong Soo LEE ; Minseok SUH ; Azmal SARKER ; Yoori CHOI
Nuclear Medicine and Molecular Imaging 2020;54(5):207-223
Since glymphatic was proposed and meningeal lymphatic was discovered, MRI and even PET were introduced to investigate brain parenchymal interstitial fluid (ISF), cerebrospinal fluid (CSF), and lymphatic outflow in rodents and humans. Previous findings by ex vivo fluorescent microscopic, and in vivo two-photon imaging in rodents were reproduced using intrathecal contrast (gadobutrol and the similar)-enhanced MRI in rodents and further in humans. On dynamic MRI of meningeal lymphatics, in contrast to rodents, humans use mainly dorsal meningeal lymphatic pathways of ISF-CSF-lymphatic efflux. In mice, ISF-CSF exchange was examined thoroughly using an intra-cistern injection of fluorescent tracers during sleep, aging, and neurodegeneration yielding many details. CSF to lymphatic efflux is across arachnoid barrier cells over the dorsal dura in rodents and in humans. Meningeal lymphatic efflux to cervical lymph nodes and systemic circulation is also well-delineated especially in humans onintrathecal contrast MRI. Sleep- or anesthesia-related changes of glymphatic-lymphatic flow and the coupling of ISFCSF-lymphatic drainage are major confounders ininterpreting brain glymphatic/lymphatic outflow in rodents. PET imaging in humans should be interpreted based on human anatomy and physiology, different in some aspects, using MRI recently. Based on the summary in this review, we propose non-invasive and longer-term intrathecal SPECT/PET or MRI studies to unravel the roles of brain glymphatic/lymphatic in diseases.