1.Research progress on the application of visual electrophysiological examination in early diagnosis of glaucoma
Chang SUN ; Rong ZHANG ; Xiaolin XIAO ; Minpeng XU ; Dong MING ; Xia HUA
International Eye Science 2025;25(7):1073-1078
Glaucoma is a group of optic nerve disorders characterized by progressive optic nerve atrophy and visual field defects, which can lead to irreversible blindness. Early diagnosis of glaucoma is essential for preventing visual loss. However, due to the absence of obvious early symptoms, the diagnosis of glaucoma remains challenging. Visual electrophysiological examinations, an objective approach for evaluating visual function, have the potential to be used in the early diagnosis of glaucoma. This review integrates the latest publications to introduce visual electrophysiological examination techniques, including electroretinography(ERG)and visual evoked potential(VEP). It also explores the mechanisms underlying these techniques and their application value in the early diagnosis of glaucoma. In addition, this review summarizes the advantages, limitations, and applicable scenarios of different visual electrophysiological techniques. Finally, the review provides an outlook on the development prospects of visual electrophysiological techniques in the early diagnosis of glaucoma. The findings of this review can assist clinicians in selecting appropriate diagnostic methods, promote the innovation and development of early visual electrophysiological diagnostic techniques for glaucoma, and contribute to reducing the risk of blindness caused by glaucoma.
2.Research progress on the characteristics of magnetoencephalography signals in depression.
Zhiyuan CHEN ; Yongzhi HUANG ; Haiqing YU ; Chunyan CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(1):189-196
Depression, a mental health disorder, has emerged as one of the significant challenges in the global public health domain. Investigating the pathogenesis of depression and accurately assessing the symptomatic changes are fundamental to formulating effective clinical diagnosis and treatment strategies. Utilizing non-invasive brain imaging technologies such as functional magnetic resonance imaging and scalp electroencephalography, existing studies have confirmed that the onset of depression is closely associated with abnormal neural activities and altered functional connectivity in multiple brain regions. Magnetoencephalography, unaffected by tissue conductivity and skull thickness, boasts high spatial resolution and signal-to-noise ratio, offering unique advantages and significant value in revealing the abnormal brain mechanisms and neural characteristics of depression. This review, starting from the rhythmic characteristics, nonlinear dynamic features, and connectivity characteristics of magnetoencephalography in depression patients, revisits the research progress on magnetoencephalography features related to depression, discusses current issues and future development trends, and provides insights for the study of pathophysiological mechanisms, as well as for clinical diagnosis and treatment of depression.
Humans
;
Magnetoencephalography/methods*
;
Brain/physiopathology*
;
Depression/diagnosis*
;
Electroencephalography
;
Magnetic Resonance Imaging
3.Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation.
Lincong PAN ; Xinwei SUN ; Kun WANG ; Yupei CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(2):272-279
Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% ( P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet's 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Signal-To-Noise Ratio
;
Deep Learning
;
Algorithms
4.Research on the relationship between resting-state spontaneous electroencephalography and task-evoked electroencephalography.
Huan HE ; Xiaolin XIAO ; Jin YUE ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(3):620-627
In recent years, it has become a new direction in the field of neuroscience to explore the mode characteristics, functional significance and interaction mechanism of resting spontaneous electroencephalography (EEG) and task-evoked EEG. This paper introduced the basic characteristics of spontaneous EEG and task-evoked EEG, and summarized the core role of spontaneous EEG in shaping the adaptability of the nervous system. It focused on how the spontaneous EEG interacted with the task-evoked EEG in the process of task processing, and emphasized that the spontaneous EEG could significantly affect the performance of tasks such as perception, cognition and movement by regulating neural activities and predicting external stimuli. These studies provide an important theoretical basis for in-depth understanding of the principle and mechanism of brain information processing in resting and task states, and point out the direction for further exploring the complex relationship between them in the future.
Humans
;
Electroencephalography/methods*
;
Brain/physiology*
;
Rest/physiology*
;
Cognition/physiology*
;
Evoked Potentials/physiology*
;
Task Performance and Analysis
5.A cephalometric landmark detection method using dual-encoder on X-ray image.
Chao DAI ; Chaolin HUANG ; Minpeng XU ; Yang WANG
Journal of Biomedical Engineering 2025;42(5):883-891
Accurate detection of cephalometric landmarks is crucial for orthodontic diagnosis and treatment planning. Current landmark detection methods are mainly divided into heatmap-based and regression-based approaches. However, these methods often rely on parallel computation of multiple models to improve accuracy, significantly increasing the complexity of training and deployment. This paper presented a novel regression method that can simultaneously detect all cephalometric landmarks in high-resolution X-ray images. By leveraging the encoder module of Transformer, a dual-encoder model was designed to achieve coarse-to-fine localization of cephalometric landmarks. The entire model consisted of three main components: a feature extraction module, a reference encoder module, and a fine-tuning encoder module, responsible for feature extraction and fusion of X-ray images, coarse localization of cephalometric landmarks, and fine localization of landmarks, respectively. The model was fully end-to-end differentiable and could learn the intercorrelation relationships between cephalometric landmarks. Experimental results showed that the successful detection rate (SDR) of our algorithm was superior to other existing methods. It attained the highest 2 mm SDR of 89.51% on test set 1 of the ISBI2015 dataset and 90.68% on the test set of the ISBI2023 dataset. Meanwhile, it reduces memory consumption and enhances the model's popularity and applicability, providing more reliable technical support for orthodontic diagnosis and treatment plan formulation.
Cephalometry/methods*
;
Humans
;
Algorithms
;
Anatomic Landmarks/diagnostic imaging*
;
Image Processing, Computer-Assisted/methods*
;
X-Rays
6.Applications and prospects of electroencephalography technology in neurorehabilitation assessment and treatment.
Weizhong HE ; Dengyu WANG ; Qiangfan MENG ; Feng HE ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2024;41(6):1271-1278
With the high incidence of neurological diseases such as stroke and mental illness, rehabilitation treatments for neurological disorders have received widespread attention. Electroencephalography (EEG) technology, despite its excellent temporal resolution, has historically been limited in application due to its insufficient spatial resolution, and is mainly confined to preoperative assessment, intraoperative monitoring, and epilepsy detection. However, traditional constraints of EEG technology are being overcome with the popularization of EEG technology with high-density over 64-lead, the application of innovative analysis techniques and the integration of multimodal techniques, which are significantly broadening its applications in clinical settings. These advancements have not only reinforced the irreplaceable role of EEG technology in neurorehabilitation assessment, but also expanded its therapeutic potential through its combined use with technologies such as transcranial magnetic stimulation, transcranial electrical stimulation and brain-computer interfaces. This article reviewed the applications, advancements, and future prospects of EEG technology in neurorehabilitation assessment and treatment. Advancements in technology and interdisciplinary collaboration are expected to drive new applications and innovations in EEG technology within the neurorehabilitation field, providing patients with more precise and personalized rehabilitation strategies.
Humans
;
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Neurological Rehabilitation/methods*
;
Transcranial Magnetic Stimulation
;
Transcranial Direct Current Stimulation
;
Nervous System Diseases/diagnosis*
;
Epilepsy/diagnosis*
7.Recognition of high-frequency steady-state visual evoked potential for brain-computer interface.
Ruixin LUO ; Xinyi DOU ; Xiaolin XIAO ; Qiaoyi WU ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(4):683-691
Coding with high-frequency stimuli could alleviate the visual fatigue of users generated by the brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). It would improve the comfort and safety of the system and has promising applications. However, most of the current advanced SSVEP decoding algorithms were compared and verified on low-frequency SSVEP datasets, and their recognition performance on high-frequency SSVEPs was still unknown. To address the aforementioned issue, electroencephalogram (EEG) data from 20 subjects were collected utilizing a high-frequency SSVEP paradigm. Then, the state-of-the-art SSVEP algorithms were compared, including 2 canonical correlation analysis algorithms, 3 task-related component analysis algorithms, and 1 task discriminant component analysis algorithm. The results indicated that they all could effectively decode high-frequency SSVEPs. Besides, there were differences in the classification performance and algorithms' speed under different conditions. This paper provides a basis for the selection of algorithms for high-frequency SSVEP-BCI, demonstrating its potential utility in developing user-friendly BCI.
Humans
;
Brain-Computer Interfaces
;
Evoked Potentials, Visual
;
Algorithms
;
Discriminant Analysis
;
Electroencephalography
8.Research progress of brain-computer interface application paradigms based on rapid serial visual presentation.
Jingmin SUN ; Jiayuan MENG ; Jia YOU ; Mingming YANG ; Jing JIANG ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(6):1235-1241
Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.
Humans
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Brain/physiology*
;
Artificial Intelligence
;
Photic Stimulation/methods*
9.Advances in brain-computer interface based on high-frequency steady-state visual evoked potential.
Chenguang ZHENG ; Yang LIU ; Xiaolin XIAO ; Xiaoyu ZHOU ; Fangzhou XU ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(1):155-162
Steady-state visual evoked potential (SSVEP) has been widely used in the research of brain-computer interface (BCI) system in recent years. The advantages of SSVEP-BCI system include high classification accuracy, fast information transform rate and strong anti-interference ability. Most of the traditional researches induce SSVEP responses in low and middle frequency bands as control signals. However, SSVEP in this frequency band may cause visual fatigue and even induce epilepsy in subjects. In contrast, high-frequency SSVEP-BCI provides a more comfortable and natural interaction despite its lower amplitude and weaker response. Therefore, it has been widely concerned by researchers in recent years. This paper summarized and analyzed the related research of high-frequency SSVEP-BCI in the past ten years from the aspects of paradigm and algorithm. Finally, the application prospect and development direction of high-frequency SSVEP were discussed and prospected.
Humans
;
Brain-Computer Interfaces
;
Evoked Potentials, Visual
;
Algorithms
10.Research on phase modulation to enhance the feature of high-frequency steady-state asymmetric visual evoked potentials.
Wei ZHAO ; Lichao XU ; Xiaolin XIAO ; Weibo YI ; Yuanfang CHEN ; Kun WANG ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(3):409-417
High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.
Humans
;
Evoked Potentials, Visual
;
Brain-Computer Interfaces
;
Healthy Volunteers
;
Signal-To-Noise Ratio

Result Analysis
Print
Save
E-mail