1.Molecular design and immunogenicity of a multiple-epitope foot-and-mouth disease virus antigen, adjuvants, and DNA vaccination.
Mingxiao MA ; Ningyi JIN ; Gefen YIN ; Huijun LU ; Chang LI ; Kuoshi JIN ; Zuyi QU
Chinese Journal of Biotechnology 2009;25(4):514-519
We designed and constructed a fuse expression gene OAAT and staphylococcal enterotoxin A (SEA) on the basis of the OAAT designed and constructed which consists of the structural protein VP1 genes from serotypes A and O FMDV, 5 major VP1 immunodominant epitopes from two genotypes of Asia1 serotype, and 3 Th2 epitopes originating from the non-structural protein, 3ABC gene and structural protein VP4 gene. The recombinant plasmids pEA was constructed using SEA as a genetic adjuvant. Expressions of target gene from the pEA in Hela cell were verified by IFA and Western blotting. The experiment of BALB/c mice immunized with the DNA vaccines showed that pA and pEA could induce simultaneously specific antibodies against serotypes A, Asia1, and O FMDV, and the highest antibody titres were found in the pEA and inactivated vaccine groups compared to pA vaccinating mice. Compared with the control, the levels of IL-2, IFN-gamma, IL-4, and IL-10 expression by splenic lymphocytes from mice immunized with pA and pEA were significantly increased. In addition, we found that the levels of IL-2, IFN-gamma and IL-4 from the mice immunized with pEA was higher than mice immunized with pA did. The results of viral challenge in guinea pigs showed the pA, pEA and inactivated vaccine provided full protection in 2/4, 2/4, 3/4, 3/4 and 4/4, 4/4 guinea pigs from challenge with FMDV O/NY00 and Asial/YNBS/58, respectively. The results demonstrated fuse protein OAAT and SEA may be potential immunoge against FMDV, furthermore, SEA may be an effective genetic adjuvant for DNA vaccine.
Adjuvants, Immunologic
;
genetics
;
Animals
;
Antigens, Viral
;
immunology
;
Capsid Proteins
;
genetics
;
immunology
;
Enterotoxins
;
genetics
;
immunology
;
Epitopes
;
immunology
;
Foot-and-Mouth Disease
;
immunology
;
prevention & control
;
Foot-and-Mouth Disease Virus
;
immunology
;
Guinea Pigs
;
HeLa Cells
;
Humans
;
Mice
;
Mice, Inbred BALB C
;
Peptide Fragments
;
genetics
;
immunology
;
Vaccines, DNA
;
immunology
;
Viral Structural Proteins
;
genetics
;
immunology
;
Viral Vaccines
;
immunology
2.Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity
Yang LIU ; Xiaojia LIU ; Na ZHANG ; Mingxiao YIN ; Jingwen DONG ; Qingxuan ZENG ; Genxiang MAO ; Danqing SONG ; Lu LIU ; Hongbin DENG
Acta Pharmaceutica Sinica B 2020;10(12):2299-2312
Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.
3.Tubeimoside-1 induces TFEB-dependent lysosomal degradation of PD-L1 and promotes antitumor immunity by targeting mTOR.
Xiaojia LIU ; Mingxiao YIN ; Jingwen DONG ; Genxiang MAO ; Wenjian MIN ; Zean KUANG ; Peng YANG ; Lu LIU ; Na ZHANG ; Hongbin DENG
Acta Pharmaceutica Sinica B 2021;11(10):3134-3149
Programmed cell death ligand 1 (PD-L1)/programmed cell death protein 1 (PD-1) cascade is an effective therapeutic target for immune checkpoint blockade (ICB) therapy. Targeting PD-L1/PD-1 axis by small-molecule drug is an attractive approach to enhance antitumor immunity. Using flow cytometry-based assay, we identify tubeimoside-1 (TBM-1) as a promising antitumor immune modulator that negatively regulates PD-L1 level. TBM-1 disrupts PD-1/PD-L1 interaction and enhances the cytotoxicity of T cells toward cancer cells through decreasing the abundance of PD-L1. Furthermore, TBM-1 exerts its antitumor effect in mice bearing Lewis lung carcinoma (LLC) and B16 melanoma tumor xenograft