1.Pelvic radiotherapy induces dysbiosis of gut microbiota and enteric infection in mice
Xi RAN ; Mingqiang SHEN ; Le CAO ; Junping WANG ; Rong LI ; Yongping SU ; Aiping WANG
Chinese Journal of Radiological Medicine and Protection 2015;35(9):641-646
Objective To explore the changes of gut microbiota in response to abdominal and pelvic radiotherapy and its potential relationship with intestinal infection.Methods Irradiation was delivered to the abdominal region of BALB/c mice,following the regular human pelvic-radiotherapy protocol,2.0 Gy/d,continuous 5 d/week.Samples of ileum tissue and the intestinal content were collected at different time points of irradiation procedure,including after 3 and 5 weeks,and at 1 week after 6 weeks of irradiation.Quantitative RT-PCR was used to measure the mRNA level of antimicrobial peptides and pro-inflammtory factors.Bacterial translocation was determined by PCR.The gut microbiota was characterized by the denaturing gradient electrophoresis assay.Results The expressions of cryptdin-1 and cryptdin-4 were decreased after 3 weeks of irradiation and at 1 week after 6 weeks of irradiation(t =-7.43,-3.54,-4.72,-4.27,P < 0.05),while they were significantly increased at the 5 weeks of radiation (t =6.15,5.75,P < 0.05).The diversity index and richness of gut microbiota after 3 or 5 weeks irradiation were significantly decreased (t =-3.49,-4.19,-3.44,-4.97,P < 0.05).The gut microbiota dysbiosis of the irradiated mice was characterized with the decrease of probiotics of Lactobacillus and the increasing of opportunistic pathogen of Escherichia coli,Shigella flexneri,et al.Bacterial translocation episodes were more frequently in the irradiated mice than that of control animal.The mRNA levels of IL-1β、IL-6 and TNF-α were significantly increased after 3 or 5 weeks of irradiation (t =4.85,6.16,7.71,4.60,4.86,5.97,P < 0.05).Compared with the control,the expression levels of IL-1β and TNF-α at the 1 week after 6 weeks of irradiation ending was also obviously enhanced (t =3.67,5.88,P <0.05).Conclusions Pelvic radiotherapy can induce abnormality of enteric antimicrobial peptides and may result in gut microbiota dysbiosis.The disturbed gut microbial flora may further trigger an incurrence of bacterial translocation and enteritis.Therefore,the gut microbiota may be a potential interfering target to alleviate radiotherapy adverse effect.
2. The changes of perioperative immunity index in patients with breast cancer and its clinical significance
Rong CHEN ; Guoping CHEN ; Jiahang WANG ; Jianming CHEN ; Mingqiang LIN
Chinese Journal of Oncology 2019;41(11):849-853
Objective:
To investigate the changes of perioperative immune index in patients with breast cancer and its clinical significance.
Methods:
Th1 cells, Th2 cells, Th1/Th2 ratio and regulatory T cells (Treg) were detected in peripheral blood of 103 patients with primary breast cancer and 116 patients with breast fibroma before surgery and on the 1st, 3rd and 5th day following operation. The relationship of changes in T lymphocyte subsets and clinicopathological characteristics, as well as tumor-free survival of breast cancer patients, was analyzed.
Results:
The levels of Th1 cells in breast cancer group on the 1st, 3rd and 5th day following operation were (12.20±0.45)%, (13.89±0.47)%, (14.04±0.49)%, which were significantly lower than those before operation [(15.82 + 0.51)%, all
3.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
4.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
5.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
6.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
7.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
8.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
9.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.
10.Isolation and structural identification of a potassium ion channel Kv4.1 inhibitor SsTx-P2 from centipede venom
Canwei DU ; Fuchu YUAN ; Xinyi DUAN ; Mingqiang RONG ; Er MENG ; Changjun LIU
Journal of Zhejiang University. Medical sciences 2024;53(2):194-200
Objective:To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom,and to determine its sequence and structure.Methods:Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom,and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording.The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry;its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry;its structure was established based on iterative thread assembly refinement online analysis.Results:A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8,and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSG DSRLKD-OH.Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell,with 1.0 μmol/L SsTx-P2 suppressing 95%current of Kv4.1 channel.Its structure showed that SsTx-P2 shared a conserved helical structure.Conclusion:The study has isolated a novel peptide SsTx-P2 from centipede venom,which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.