1.STUDY ON GMA-DNA ADDUCTS
Fude FANG ; Jin ZUO ; Haixin LEI ; Mingjia TAN
Chinese Medical Sciences Journal 1999;(1):1-6
Objective. DNA modification fixed as mutations in the cells may be an essential factor in the initiation step of chemical carcinogenesis. In order to explore the mechanism of gene mutation and cell transformation induced by glycidyl methacrylate (GMA), the current test studied the characteristics of GMA-DNA adducts formation in vitro.Methods. In vitro test, dAMP, dCMP, dGMP, dTMP and calf thymus DNA were allowed to react with GMA (Glycidyl Methacrylate). After the reaction, the mixtures were detected by UV and subjected to reversed-phase HPLC on ultrasphere ODS reversed-phase column, the reaction products were eluted with a linear gradients of methanol (solvent A) and 10mmol/L ammonium formate, pH5.0 (solvent B). The synthesized adducts were then characterized by UV spectroscopy in acid (pH1.0), neutral (pH7.2), alkaline (pH11.0) and by mass spectroscopy.Results. The results showed that GMA could bind with dAMP, dCMP, dGMP and calf thymus DNA by covalent bond, and the binding sites were specific (N6 of adenine, N3 of cytosine). Meanwhile, a main GMA-DNA adduct in the reaction of GMA with calf thymus DNA was confirmed as N3-methacrylate-2-hydroxypropy1-dCMP.Conclusions. GMA can react with DNA and /or deoxynucleotide monophosphate and generate some adducts such as N6-methacrylate-2-hydroxypropyl-dAMP and N3-methacrylate-2-hydroxypropyl-dCMP, ets. Formation of GMA-DNA adducts is an important molecular event in gene mutation and cell transformation induced by GMA.
2.Neddylation inhibitor MLN4924 suppresses cilia formation by modulating AKT1.
Hongmei MAO ; Zaiming TANG ; Hua LI ; Bo SUN ; Mingjia TAN ; Shaohua FAN ; Yuan ZHU ; Yi SUN
Protein & Cell 2019;10(10):726-744
The primary cilium is a microtubule-based sensory organelle. The molecular mechanism that regulates ciliary dynamics remains elusive. Here, we report an unexpected finding that MLN4924, a small molecule inhibitor of NEDD8-activating enzyme (NAE), blocks primary ciliary formation by inhibiting synthesis/assembly and promoting disassembly. This is mainly mediated by MLN4924-induced phosphorylation of AKT1 at Ser473 under serum-starved, ciliary-promoting conditions. Indeed, pharmaceutical inhibition (by MK2206) or genetic depletion (via siRNA) of AKT1 rescues MLN4924 effect, indicating its causal role. Interestingly, pAKT1-Ser activity regulates both ciliary synthesis/assembly and disassembly in a MLN4924 dependent manner, whereas pAKT-Thr determines the ciliary length in MLN4924-independent but VHL-dependent manner. Finally, MLN4924 inhibits mouse hair regrowth, a process requires ciliogenesis. Collectively, our study demonstrates an unexpected role of a neddylation inhibitor in regulation of ciliogenesis via AKT1, and provides a proof-of-concept for potential utility of MLN4924 in the treatment of human diseases associated with abnormal ciliogenesis.