1.Pachymaran regulates pyroptosis of liver cancer cells via SQLE/NLRP3/GSDMD signaling pathway
Ying YANG ; Yuan CAO ; Jiao ZHAO ; Zheng LI ; Qun WANG ; Hao GAO ; Xiaofei SUN ; Mingdian YUAN ; Nan SONG
Chinese Journal of Pathophysiology 2024;40(3):444-455
AIM:Using bioinformatics analysis and experiment validation to explore the differential expres-sion genes related to abnormal lipid metabolism in hepatocellular carcinoma(HCC)and the molecular mechanism of pachymaran affecting pyroptosis through squalene epoxidase(SQLE)/nucleotide-binding oligomerization domain-like re-ceptor protein 3(NLRP3)/gasdermin D(GSDMD)signaling pathway.METHODS:(1)The GEO,GSEA,DAVID,STRING and GEPIA databases were employed to screen abnormal lipid metabolism-related differentially expressed genes in HCC.(2)The tumor tissues from HCC patients(n=9)were collected to verify the differential expression of SQLE.(3)The inhibitory effect of pachymaran on the viability of human HCC cell line HepG2 was measured by CCK-8 assay.(4)The HepG2 cells were divided into control group and pachymaran(800 mg/L)group.The cell migration was analyzed by wound-healing assay,and RT-qPCR was used to measure SQLE mRNA expression.(5)The HepG2 cells with overexpres-sion of SQLE(OE-SQLE)were divided into 5 groups as follows:control group,overexpression negative control(OE-NC)group,OE-SQLE group,OE-NC+pachymaran group,and OE-SQLE+pachymaran group.The mRNA and protein expres-sion levels of SQLE and pyroptosis-related factors were determined by RT-qPCR and Western blot.Colorimetric method and ELISA were used to measure lactate dehydrogenase(LDH),interleukin-1β(IL-1β)and IL-18 levels.The necrosis of HepG2 cells was analyzed by flow cytometry.RESULTS:The SQLE gene was screened through bioinformatics analysis,and its mRNA expression was significantly increased in tumor tissues from HCC patients(P<0.01).In cell experiments,treatment with 800 mg/L pachymaran for 48 h had a significant inhibitory effect on HepG2 cell viability,and the expres-sion of SQLE mRNA was reduced(P<0.01).After overexpression of SQLE,the mRNA and protein levels of pyroptosis-re-lated factors,necrotic rate,and LDH,IL-1β and IL-18 levels were significantly decreased(P<0.05).After treatment with pachymaran,the above indicators were significantly increased(P<0.05).CONCLUSION:The SQLE is abnormal-ly highly expressed in HCC,and pachymaran can affect the growth of HCC cells by activating the NLRP3/GSDMD pyropto-sis pathway through SQLE.
2.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
3.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
4.Gypenoside L Regulates piR-hsa-2804461/FKBP8/Bcl-2 Axis to Promote Apoptosis and Inhibit Ovarian Cancer
Yuanguang DONG ; Yinying SUN ; Mingdian YUAN ; Ying YANG ; Jiaxin WANG ; Jingxuan ZHU ; Nan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):98-106
ObjectiveTo explore the molecular mechanism by which gypenoside L (Gyp-L) promotes apoptosis and inhibits ovarian cancer (OC) through the FK506-binding protein (FKBP) prolyl isomerase 8 (FKBP8)/B-cell lymphoma-2 (Bcl-2) axis, with the piR-hsa-2804461 pathway as a breakthrough point. MethodsThe effects of different concentrations of Gyp-L and cis-platinum on the proliferation of OVCAR3 cells were determined by the cell count kit-8 method to identify the appropriate intervention concentration for subsequent experiments. OVCAR3 cells were allocated into blank, low-dose Gyp-L (Gyp-L-L, 50 µmol·L-1), high-dose Gyp-L (Gyp-L-H, 100 µmol·L-1), and cis-platinum (15 µmol·L-1) groups. The migration, colony formation, and apoptosis of OVCAR3 cells were detected by the cell scratch assay, colony formation assay, and flow cytometry, respectively. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes in OVCAR3 cells were determined by Real-time PCR, and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by simple Western blot. Further, an OVCAR3 cell model with piR-hsa-2804461 knocked out was constructed. The cells were allocated into blank, NC-inhibitor, inhibitor, NC-inhibitor+Gyp-L, and inhibitor+Gyp-L groups. The colony formation of OVCAR3 cells was detected by the colony formation assay. The mRNA levels of piR-hsa-2804461 and FKBP8/Bcl-2 axis-related genes and the expression levels of FKBP8/Bcl-2 axis-related proteins were determined by Real-time PCR and simple Western blotting, respectively. ResultsGyp-L inhibited the migration and proliferation (P<0.01), promoted the apoptosis (P<0.05), up-regulated the mRNA level of piR-hsa-2804461 (P<0.05), and down-regulated the mRNA and protein levels of FKBP8 and Bcl-2 (P<0.05) in OVCAR3 cells. Furthermore, Gyp-L increased the mRNA and protein levels of Bcl-2-associated X protein (Bax), cysteinyl aspartate-specific proteinase (Caspase)-3, and Caspase-9, which are related to the FKBP8/Bcl-2 axis (P<0.05). ConclusionGyp-L may promote apoptosis by regulating the piR-hsa-2804461/FKBP8/Bcl-2 axis, thus affecting the occurrence of ovarian cancer.
5.Molecular Mechanism of Gypenoside L in Anti-Ovarian Cancer by Affecting GCK-Mediated Glycolytic Pathway
Yuanguang DONG ; Nan SONG ; Ying YANG ; Jingxuan ZHU ; Jiaxin WANG ; Mingdian YUAN ; Yingying SUN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):118-124
ObjectiveTo explore the molecular mechanism of gypenoside L (Gyp-L) in the treatment of ovarian cancer (OC) by taking the glycolytic pathway of OC as the key point. MethodsThe proliferation activity of OVCAR3 cells was measured by the cell counting kit-8 (CCK-8) assay to determine the appropriate intervention concentration for subsequent experiments. The cell clone formation assay and the scratch healing assay were employed to assess the proliferation and migration capabilities of OVCAR3 cells. OVCAR3 cells were divided into a blank group, a Gyp-L-L group (low concentration of Gyp-L, 50 µmol
6.Technology optimization and in vitro anti-tumor effect evaluation of reactive oxygen species-responsive metho-trexate-modified paclitaxel/icariin micelles
Naijian ZOU ; Liang KONG ; Lei CHANG ; Pengbo WAN ; Xiaolin JIANG ; Mingdian YUAN ; Yingqiang LU
China Pharmacy 2025;36(3):285-292
OBJECTIVE To prepare reactive oxygen species (ROS)-responsive methotrexate (MTX)-modified paclitaxel (PTX)/icariin (ICA) micelles (MTX-oxi-Ms@PTX/ICA), and perform technology optimization and in vitro anti-tumor effect evaluation. METHODS Synergistic toxicity concentration range of PTX and ICA was screened by synergistic toxicity test. The micelles were prepared by thin film hydration method, and their technology was optimized by response surface methodology. The fundamental characteristics of the micelles prepared by the optimal technology were evaluated. The micelles’ cytotoxicity, targeting ability to renal carcinoma RENCA cells of mice, and their inhibitory effects on invasion and migration were assessed. RESULTS Results of synergistic toxicity experiments demonstrated that the strongest synergistic effect occurred when PTX concentrations ranged from 2.5 to 10 μmol/L and ICA concentrations ranged from 5 to 15 μmol/L. The optimal technology of MTX-oxi-Ms@PTX/ ICA was determined to include 80 mg Soluplus®, Soluplus® and TPGS1000 mass ratio of 4∶1 (mg/mg), 2 mg DSPE-PEG2000-TK- PEG5000, 2 mg DSPE-PEG2000-MTX, 1 mg PTX, and 1.5 mg ICA, with a hydration temperature of 35 ℃ and a formulation volume of 5 mL. Under the optimal conditions, average encapsulation efficiency of PTX and ICA in 3 batches of MTX-oxi- Ms@PTX/ICA reached 92.75%, the critical micelle concentration (CMC) was 0.007 9 mg/mL, the particle size was (62.09±1.68) nm, the polydispersity index (PDI) was 0.046±0.032, and the Zeta potential was (-2.47±0.15) mV. Within 30 days of placement, there was no significant change E-mail:yingqiang_1126@163.com in particle size and polydispersity index of micelle. In vitro release experiments showed that MTX-oxi-Ms@PTX/ICA released drugs more rapidly in oxidative environments. The half maximal inhibitory concentration of MTX-oxi-Ms@PTX/ICA against RENCA cells was (5.170±0.036) μmol/L. In vitro cellular uptake experiments indicated that compared with unmodified micelles, MTX modified micelles had stronger targeting effects on cancer cells, and also significantly enhanced the inhibitory ability of invasion and migration of RENCA cells (P<0.05). CONCLUSIONS MTX-oxi-Ms@PTX/ICA micelles are successfully prepared, which exhibit high encapsulation efficiency, low critical micelle concentration, and good stability. These micelles demonstrate significant cytotoxicity against RENCA cells and effectively inhibit cancer cell invasion and migration.