1.Pharmacokinetic study of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland
Yu ZHANG ; Jiaming LI ; Dan PENG ; Ruoqiu FU ; Yue MING ; Zhengbi LIU ; Jingjing WANG ; Shiqi CHENG ; Hongjun XIE ; Yao LIU
China Pharmacy 2025;36(6):680-685
OBJECTIVE To explore the pharmacokinetic characteristics of 3 blood-absorbed components of Xiangshao sanjie oral liquid in rats with hyperplasia of mammary gland (HMG). METHODS Female SD rats were divided into control group and HMG group according to body weight, with 6 rats in each group. The HMG group was given estrogen+progesterone to construct HMG model. After modeling, two groups were given 1.485 g/kg of Xiangshao sanjie oral liquid (calculated by crude drug) intragastrically, once a day, for 7 consecutive days. Blood samples were collected before the first administration (0 h), and at 5, 15, 30 minutes and 1, 2, 4, 8, 12, 24 hours after the last administration, respectively. Using chlorzoxazone as the internal standard, the plasma concentrations of ferulic acid, paeoniflorin and rosmarinic acid in rats were detected by UPLC-Q/TOF-MS. The pharmacokinetic parameters [area under the drug time curve (AUC0-24 h, AUC0-∞), mean residence time (MRT0-∞), half-life (t1/2), peak time (tmax), peak concentration (cmax)] were calculated by the non-atrioventricular model using Phoenix WinNonlin 8.1 software. RESULTS Compared with the control group, the AUC0-24 h, AUC0-∞ and cmax of ferulic acid in the HMG group were significantly increased (P<0.05); the AUC0-24 h, AUC0-∞ , MRT0-∞ , t1/2 and cmax of paeoniflorin increased, but there was no significant difference between 2 groups (P>0.05); the AUC0-24 h and MRT0-∞ of rosmarinic acid were significantly increased or prolonged (P<0.05). C ONCLUSIONS In HMG model rats, the exposure of ferulic acid, paeoniflorin and rosmarinic acid in Xiangshao sanjie oral liquid all increase, and the retention time of rosmarinic acid is significantly prolonged.
2.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
3.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
4.Expert consensus on digital restoration of complete dentures.
Yue FENG ; Zhihong FENG ; Jing LI ; Jihua CHEN ; Haiyang YU ; Xinquan JIANG ; Yongsheng ZHOU ; Yumei ZHANG ; Cui HUANG ; Baiping FU ; Yan WANG ; Hui CHENG ; Jianfeng MA ; Qingsong JIANG ; Hongbing LIAO ; Chufan MA ; Weicai LIU ; Guofeng WU ; Sheng YANG ; Zhe WU ; Shizhu BAI ; Ming FANG ; Yan DONG ; Jiang WU ; Lin NIU ; Ling ZHANG ; Fu WANG ; Lina NIU
International Journal of Oral Science 2025;17(1):58-58
Digital technologies have become an integral part of complete denture restoration. With advancement in computer-aided design and computer-aided manufacturing (CAD/CAM), tools such as intraoral scanning, facial scanning, 3D printing, and numerical control machining are reshaping the workflow of complete denture restoration. Unlike conventional methods that rely heavily on clinical experience and manual techniques, digital technologies offer greater precision, predictability, and efficacy. They also streamline the process by reducing the number of patient visits and improving overall comfort. Despite these improvements, the clinical application of digital complete denture restoration still faces challenges that require further standardization. The major issues include appropriate case selection, establishing consistent digital workflows, and evaluating long-term outcomes. To address these challenges and provide clinical guidance for practitioners, this expert consensus outlines the principles, advantages, and limitations of digital complete denture technology. The aim of this review was to offer practical recommendations on indications, clinical procedures and precautions, evaluation metrics, and outcome assessment to support digital restoration of complete denture in clinical practice.
Humans
;
Denture, Complete
;
Computer-Aided Design
;
Denture Design/methods*
;
Consensus
;
Printing, Three-Dimensional
5.Associations of per- and poly-fluoroalkyl substances exposure with blood lipids in middle-aged and elderly women
Yingqian YOU ; Yue FENG ; Ming FU ; Huan GUO
Journal of Environmental and Occupational Medicine 2024;41(6):593-600
Background Per- and poly-fluoroalkyl substances (PFAS) are a class of emerging persistent organic pollutants, and their negative health impacts have been widely concerned. There is a lack of epidemiological studies on the associations of PFAS exposure with lipid homeostasis. Objective To investigate the associations of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) exposure with blood lipid levels and dyslipidemia in middle-aged and elderly women. Methods This study was based on 795 middle-aged and elderly women from a female sub-cohort of the Dongfeng-Tongji cohort study, excluding the participants without blood lipid measurements and/or reported use of lipid-lowering drugs at baseline. The concentrations of plasma PFOS and PFOA were measured by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The concentrations of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured using an automatic analyzer. The normally distributed continuous variables were presented as mean ± standard deviation (
6.Effects of phillyrin on lung injury in rats with influenza virus pneumonia by regulating the SphK1/S1P/S1PR1 signal pathway
Hai-Yan LIU ; Ming-Yue FU ; Hai-Zhen SUN ; Yu-Ying ZENG
The Chinese Journal of Clinical Pharmacology 2024;40(3):378-382
Objective To explore the effect of phillyrin(KD-1)on lung injury in rats with influenza virus pneumonia and its regulatory mechanism on the sphingosine kinases 1(SphK1)/sphingosine 1-phosphate(S1P)/S1P receptors 1(S1PR1)signal pathway.Methods Wistar male rats were divided into control group(gavage with equal amount of 0.9%NaCl),model group(gavage with equal amount of 0.9%NaCl),positive drug group(gavage with 0.02 g·kg-1 ribaverin),PF-543 group(gavage with 10 mg·kg-1 SphK1 inhibitor PF-543 Citrate)and experimental-L,-H groups(gavage with 6.5,13 mg·kg-1 KD-1,respectively).Except the control group,the other rats were treated with influenza virus nasal drip to establish influenza virus infection pneumonia model.The lung index of rats was measured;Hematoxylin-eosin(HE)staining was applied to observe the pathological damage of lung tissue in rats;the contents of interleukin 1β(IL-1β),tumor necrosis factor α(TNF-α)and IL-6 in bronchoalveolar lavage fluid(BALF)were detected by enzyme linked immunosorbent assay(ELISA);Western blot was applied to detect the expression levels of SphK1,S1P and S1PR1 proteins in rat lung tissue.Results The lung indices of experimental-L,-H groups,PF-543 group,positive drug group,model group and control group were(7.62±0.51),(5.34±0.46),(6.53±0.52),(5.48±0.43),(12.46±0.87)and(4.41±0.32)mg·g-1;IL-1β content were(47.26±2.05),(25.18±1.58),(35.75±1.50),(27.31±1.67),(62.37±2.51)and(13.28±1.04)ng·L-1;the contents of TNF-α were(76.58±4.73),(51.82±3.90),(64.81±4.15),(53.06±3.86),(98.47±4.92)and(42.71±3.52)ng·L-1;IL-6 content were(57.62±4.29),(39.06±3.86),(48.75±3.83),(41.23±3.61),(76.92±5.24)and(28.56±3.17)ng·L-1;SphK1 protein expression were 1.07±0.08,0.51±0.04,0.65±0.05,0.53±0.04,1.28±0.09 and 0.36±0.03;S1P protein expression were 1.21±0.10,0.57±0.05,0.73±0.06,0.58±0.05,1.39±0.11 and 0.39±0.03;S1PR1 protein expression were 0.45±0.03,0.83±0.07,0.64±0.05,0.81±0.07,0.28±0.02 and 1.03±0.07,respectively.Compared with the control group,the above indexes in the model group had statistical significance(all P<0.05);compared with the model group,the above indexes in experimental-L,-H groups,PF-543 group and positive drug group had statistical significance(all P<0.05).Conclusion KD-1 may alleviate lung injury in rats with influenza virus pneumonia by inhibiting the SphK1/S1 P/S1 PR1 signal pathway.
7.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
8.Comparative study on cleansing effect of microbubble toothbrush and conventional pulsed oral irrigator
Ke-An YUE ; Wen-Xia HUANG ; Ming-Fu ZHANG ; Gui-Hua YAN ; Chang-Wei YANG ; Fei-Fei HONG ; Lu YIN
Chinese Medical Equipment Journal 2024;45(9):67-72
Objective To compare the oral cleansing effects of the microbubble toothbrush and the conventional pulsed oral irrigator to provide references for users.Methods Ninety identical 3D-printed resin tooth models were grouped and subjected to repeated experiments,which were divided randomly into five groups including a microbubble toothbrush high-speed gear(GN-H)group,a microbubble toothbrush medium-speed gear(GN-M)group,a microbubble low-speed gear(GN-L)group,a conventional pulsed oral irrigator high-speed gear(W-H)group and a conventional pulsed oral irrigator low-speed gear(W-L)group,with 18 teeth in each group.The cleansing effects of the microbubble toothbrush and the conventional pulsed oral irrigator were evaluated in terms of irrigating strength and abilities for eliminating plaque and debris.Results Both the two types of water flossers were provided with high irrigating strength and effectively reduced plaque and debris on tooth surfaces,and the GN-H,GN-M and GN-L groups behaved better significantly than the remained groups.The order of the five groups was GN-H group>GN-M group>W-H group>GN-L group>W-L group for irrigating strength,GN-H group>GN-M group>GN-L group>W-H group>W-L group for plaque removal,GN-H group>GN-M group>W-H group>GN-L group>W-L group for debris removal,with all the differences being statistically significant(P<0.05).Conclusion Both the two types of water flossers remove plaque and debris effectively,while the microbubble toothbrush gains advantages over the conventional pulsed oral irrigator.[Chinese Medical Equipment Journal,2024,45(9):67-72]
9.Influence of Tongfu Xiefei Guanchang Solution on intestinal barrier and intestinal flora of rats with acute lung injury based on p38 MAPK/MLCK signaling pathway.
Ming MA ; Kun WANG ; Yan-Hua YANG ; Meng-Ru YUE ; Quan-Na REN ; Yu-Han CHEN ; Yong-Zhen SONG ; Zi-Fu XU ; Xu ZHAO
China Journal of Chinese Materia Medica 2024;49(21):5919-5931
The study is designed to observe the mechanism of Tongfu Xiefei Guanchang Solution(TFXF) in the treatment of acute lung injury(ALI) in rats by improving intestinal barrier and intestinal flora structure via p38 mitogen-activated protein kinase(p38 MAPK)/myosin light chain kinase(MLCK) signaling pathway. Sixty SPF-grade Wistar rats were randomly divided into the control(CON) group, lipopolysaccharide(LPS) group(7.5 mg·kg~(-1)), LPS + dexamethasone(DEX) group(3.5 mg·kg~(-1)), LPS + high-dose(HD)-TFXF group(14.74 g·kg~(-1)), LPS + middle-dose(MD)-TFXF group(7.37 g·kg~(-1)), and LPS + low-dose(LD)-TFXF group(3.69 g·kg~(-1)). ALI model of the rat was established by intraperitoneal injection of LPS. The lactate dehydrogenase(LDH) activity and total protein concentration in the bronchoalveolar lavage fluid(BALF) were measured; tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) levels in lung and colon tissue of rats were detected by enzyme linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the pathological expression in the lung and colon tissue of rats. The mRNA expression of p38 MAPK, TNF-α, and IL-1β in rat lung tissue was determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). Western blot was used to detect the protein expression related to the p38 MAPK/MLCK signaling pathway in the colon tissue of rats. 16S rRNA sequencing was used to detect changes in the composition and content of intestinal flora in rats, and correlation analyses were performed to explore the regulatory role of intestinal flora in improving ALI in rats. The results showed that compared with those in the LPS group, the histopathological scores of lung and colon tissue, LDH activity, and total protein concentration in BALF were significantly reduced in rats in all groups after drug administration. Except for the LPS + LD-TFXF group, the remaining groups significantly reduced the levels of TNF-α and IL-1β in the lung and colon tissue of rats. The protein expressions of phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK)/p38, phosphorylated myosin light chain(p-MLC)/myosin light chain 2(MLC2), and MLCK in colon tissue of rats in each drug administration group were significantly decreased. The mRNA expression levels of p38 MAPK, TNF-α, and IL-1β were significantly reduced in the LPS + HD-TFXF group. 16S rRNA sequencing results showed that the abundance of intestinal flora was significantly higher in the LPS + HD-TFXF group, and intestinal floras including Sobs, Shannon, and Npshannon were significantly higher. The β-diversity distribution of intestinal flora tends toward the CON group, and the abundance of Firmicutes was significantly higher. The abundance of Proteobacteria was significantly reduced; the abundance of Bacteroides was significantly reduced, and the abundance of Ruminococcus was significantly higher. The main species differences were Blautia, Roseburia_sp_499, and Butyricicoccus. TNF-α and IL-1β of lung tissue were negatively correlated with Muribaculaceae, unclassified norank_f_Eubacterium_coprostanoligenes, and Ruminococcus and positively correlated with Bacteroides. Meanwhile, TNF-α and IL-1β of colon tissue were negatively correlated with unclassified norank_f_Eubacterium_coprostanoligenes and Ruminococcus and positively correlated with Bacteroides. The predicted biological function of the flora was related to the biosynthesis of secondary metabolites, amino acid biosynthesis, sugar metabolism, and oxidative phosphorylation. The above studies show that TFXF can repair lung and colon tissue structure and regulate inflammatory factor levels by modulating the abundance and diversity of intestinal flora species in ALI rats. Its mechanism of action in ameliorating ALI in rats may be related to the inhibition of inflammation, improvement of intestinal mucosal permeability, and maintenance of intestinal flora homeostasis and barrier through the p38 MAPK/MLCK signaling pathway.
Animals
;
Acute Lung Injury/genetics*
;
Rats
;
p38 Mitogen-Activated Protein Kinases/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Myosin-Light-Chain Kinase/genetics*
;
Male
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Wistar
;
Signal Transduction/drug effects*
;
Interleukin-1beta/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lung/metabolism*
;
Intestinal Mucosa/metabolism*
;
Humans
10.Value of glycosylated hemoglobin A1c and apolipoprotein A-1 ratio on predicting outcome of patients with acute coronary syndrome.
Yi Jia WANG ; Hong Na MU ; Rui Yue YANG ; Wen Duo ZHANG ; Xin Yue WANG ; Si Ming WANG ; Fu Sui JI ; Jun DONG ; Xue YU
Chinese Journal of Cardiology 2023;51(1):38-44
Objective: To investigate the predictive value of glycosylated hemoglobin A1c/apolipoprotein A-1 (HbA1c/ApoA-1) ratio for major adverse cardiovascular events (MACEs) in patients with acute coronary syndrome (ACS). Methods: The present study is a retrospective cohort study. ACS patients who were hospitalized and underwent coronary angiography at Beijing Hospital from March 2017 to March 2019 were enrolled. Baseline information such as sex, age, previous history, Gensini score, HbA1c and ApoA-1 were analyzed. Patients were divided into two groups according to presence or absence of MACEs and the difference on HbA1c/ApoA-1 ratio was compared between the two groups. According to the tertiles of HbA1c/ApoA-1 levels, patients were divided into high (5.87-16.12), medium (4.50-5.83) and low (2.11-4.48) HbA1c/ApoA-1 groups. Cox proportional risk model was used to evaluate the differences in MACEs and all-cause mortality among the three groups. Kaplan-Meier survival analysis was used to compare the differences of MACEs between the various HbA1c/ApoA-1 groups. Results: A total of 366 ACS patients were included in this study. The mean age of the patients was (65.9±10.3) years. There were 59 MACEs and 10 all-cause deaths during the mean of (22.3±4.4) months follow-up. After adjusting for age, systolic blood pressure, history of diabetes and Gensini score, the incidence of MACEs was 2.45 times higher in the high HbA1c/ApoA-1 group than in the low HbA1c/ApoA-1 group (95%CI 1.16-5.18, P=0.019). There was no significant difference in all-cause mortality between the high and low HbA1c/ApoA-1 groups (P=1.000). Kaplan-Meier survival analysis showed that patients in the high HbA1c/ApoA-1 group had the highest risk of MACEs, while patients in the low HbA1c/ApoA-1 group had the lowest risk of MACEs (P<0.01). Spearman rank correlation analysis showed that HbA1/ApoA-1 ratio was positively correlated with Gensini score in ACS patients (r=0.274, P<0.01). Conclusion: High HbA1c/ApoA-1 ratio was an independent risk factor for MACEs in ACS patients. Patients with high HbA1c/ApoA-1 ratio had more severe coronary artery disease lesions. HbA1c/ApoA-1 ratio may be used as a potential risk stratification biomarker for ACS patients, it might be useful for the early identification of high-risk population and for predicting the incidence of MACEs among ACS patients.
Aged
;
Humans
;
Middle Aged
;
Acute Coronary Syndrome/diagnosis*
;
Apolipoprotein A-I/analysis*
;
Biomarkers/analysis*
;
Glycated Hemoglobin/analysis*
;
Percutaneous Coronary Intervention
;
Retrospective Studies
;
Risk Factors
;
Predictive Value of Tests

Result Analysis
Print
Save
E-mail