1.Characteristics of Traditional Chinese Medicine Syndromes in Patients with Concurrent Postmenopausal Osteoporosis and Knee Osteoarthritis
Xin CUI ; Huaiwei GAO ; Long LIANG ; Ming CHEN ; Shangquan WANG ; Ting CHENG ; Yili ZHANG ; Xu WEI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):257-265
ObjectiveTo explore the characteristics of traditional Chinese medicine (TCM) syndromes in the patients with concurrent knee osteoarthritis (KOA) and postmenopausal osteoporosis (PMOP) and provide a scientific basis for precise TCM syndrome differentiation, diagnosis, and treatment of such concurrent diseases. MethodsA prospective, multicenter, cross-sectional clinical survey was conducted to analyze the characteristics of TCM syndromes in the patients with concurrent PMOP and KOA. Excel 2021 was used to statistically analyze the general characteristics of the included patients. Continuous variables were reported as
2.Characteristics of Traditional Chinese Medicine Syndromes in Patients with Concurrent Postmenopausal Osteoporosis and Knee Osteoarthritis
Xin CUI ; Huaiwei GAO ; Long LIANG ; Ming CHEN ; Shangquan WANG ; Ting CHENG ; Yili ZHANG ; Xu WEI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):257-265
ObjectiveTo explore the characteristics of traditional Chinese medicine (TCM) syndromes in the patients with concurrent knee osteoarthritis (KOA) and postmenopausal osteoporosis (PMOP) and provide a scientific basis for precise TCM syndrome differentiation, diagnosis, and treatment of such concurrent diseases. MethodsA prospective, multicenter, cross-sectional clinical survey was conducted to analyze the characteristics of TCM syndromes in the patients with concurrent PMOP and KOA. Excel 2021 was used to statistically analyze the general characteristics of the included patients. Continuous variables were reported as
3.Space magnetic environment and circadian rhythm.
Bing-Xin GAO ; Cao WANG ; Rui-Xian JIANG ; Wei-Ming TIAN
Acta Physiologica Sinica 2025;77(4):721-730
In recent years, China's manned space program has advanced rapidly, with deep space exploration missions such as manned lunar landing steadily progressing, leading to a significant extension of astronauts' duration in outer space. In this context, the impact of the space magnetic field environment on astronaut health has become increasingly conspicuous. Characterized by its complexity, the spatial magnetic field indirectly regulates the circadian rhythm system by interfering with mitochondrial functions, such as electron transport chain activity, ATP synthesis efficiency, and reactive oxygen species (ROS) balance. This disruption can lead to circadian misalignment, sleep disorders, metabolic dysregulation, and other issues, severely compromising astronauts' physical and mental well-being, as well as mission performance. Currently, researchers have carried out extensive investigations into the influence of the space magnetic environment on circadian rhythms. Nevertheless, due to disparities in magnetic field parameters, exposure durations, and the model organisms employed in experiments, the results have been inconsistent. This review systematically elaborates on ground-based simulation technologies for spatial magnetic field environments and their applications, summarizes the effects of magnetic fields with varying intensities and types on core circadian rhythm biomarkers in model organisms and humans, and explores the underlying molecular and physiological mechanisms of magnetic field-induced circadian rhythm perturbation. This work aims to deepen the understanding of the mechanisms of the space magnetic environment on biological rhythms, and establish a scientific basis for formulating adaptive protective strategies centered on circadian regulation for astronauts, thereby ensuring the successful implementation of long-term deep-space missions.
Circadian Rhythm/physiology*
;
Humans
;
Magnetic Fields/adverse effects*
;
Space Flight
;
Animals
;
Extraterrestrial Environment
4.Mechanism of Colquhounia Root Tablets against diabetic kidney disease via RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis.
Ming-Zhu XU ; Zhao-Chen MA ; Zi-Qing XIAO ; Shuang-Rong GAO ; Yi-Xin YANG ; Jia-Yun SHEN ; Chu ZHANG ; Feng HUANG ; Jiang-Rui WANG ; Bei-Lei CAI ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(7):1830-1840
This study aimed to explore the therapeutic mechanisms of Colquhounia Root Tablets(CRT) in treating diabetic kidney disease(DKD) by integrating biomolecular network mining with animal model verification. By analyzing clinical transcriptomics data, an interaction network was constructed between candidate targets of CRT and DKD-related genes. Based on the topological eigenvalues of network nodes, 101 core network targets of CRT against DKD were identified. These targets were found to be closely related to multiple pathways associated with type 2 diabetes, immune response, and metabolic reprogramming. Given that immune-inflammatory imbalance driven by metabolic reprogramming is one of the key pathogenic mechanisms of DKD, and that many core network targets of CRT are involved in this pathological process, receptor for advanced glycation end products(RAGE)-reactive oxygen species(ROS)-phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT)-nuclear factor-κB(NF-κB)-NOD-like receptor family pyrin domain containing 3(NLRP3) signaling axis was selected as a candidate target for in-depth research. Further, a rat model of DKD induced by a high-sugar, high-fat diet and streptozotocin was established to evaluate the pharmacological effects of CRT and verify the expression of related targets. The experimental results showed that CRT could effectively correct metabolic disturbances in DKD, restore immune-inflammatory balance, and improve renal function and its pathological changes by inhibiting the activation of the RAGE-ROS-PI3K-AKT-NF-κB-NLRP3 signaling axis. In conclusion, this study reveals that CRT alleviates the progression of DKD through dual regulation of metabolic reprogramming and immune-inflammatory responses, providing strong experimental evidence for its clinical application in DKD.
Animals
;
Diabetic Nephropathies/metabolism*
;
Receptor for Advanced Glycation End Products/genetics*
;
NF-kappa B/genetics*
;
Signal Transduction/drug effects*
;
Rats
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Phosphatidylinositol 3-Kinases/genetics*
;
Reactive Oxygen Species/metabolism*
;
Humans
;
Plant Roots/chemistry*
;
Rats, Sprague-Dawley
;
Tablets/administration & dosage*
5.Alleviation of hypoxia/reoxygenation injury in HL-1 cells by ginsenoside Rg_1 via regulating mitochondrial fusion based on Notch1 signaling pathway.
Hui-Yu ZHANG ; Xiao-Shan CUI ; Yuan-Yuan CHEN ; Gao-Jie XIN ; Ce CAO ; Zi-Xin LIU ; Shu-Juan XU ; Jia-Ming GAO ; Hao GUO ; Jian-Hua FU
China Journal of Chinese Materia Medica 2025;50(10):2711-2718
This paper explored the specific mechanism of ginsenoside Rg_1 in regulating mitochondrial fusion through the neurogenic gene Notch homologous protein 1(Notch1) pathway to alleviate hypoxia/reoxygenation(H/R) injury in HL-1 cells. The relative viability of HL-1 cells after six hours of hypoxia and two hours of reoxygenation was detected by cell counting kit-8(CCK-8). The lactate dehydrogenase(LDH) activity in the cell supernatant was detected by the lactate substrate method. The content of adenosine triphosphate(ATP) was detected by the luciferin method. Fluorescence probes were used to detect intracellular reactive oxygen species(Cyto-ROS) levels and mitochondrial membrane potential(ΔΨ_m). Mito-Tracker and Actin were co-imaged to detect the number of mitochondria in cells. Fluorescence quantitative polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels of Notch1, mitochondrial fusion protein 2(Mfn2), and mitochondrial fusion protein 1(Mfn1). The results showed that compared with that of the control group, the cell activity of the model group decreased, and the LDH released into the cell culture supernatant increased. The level of Cyto-ROS increased, and the content of ATP decreased. Compared with that of the model group, the cell activity of the ginsenoside Rg_1 group increased, and the LDH released into the cell culture supernatant decreased. The level of Cyto-ROS decreased, and the ATP content increased. Ginsenoside Rg_1 elevated ΔΨ_m and increased mitochondrial quantity in HL-1 cells with H/R injury and had good protection for mitochondria. After H/R injury, the mRNA and protein expression levels of Notch1 and Mfn1 decreased, while the mRNA and protein expression levels of Mfn2 increased. Ginsenoside Rg_1 increased the mRNA and protein levels of Notch1 and Mfn1, and decreased the mRNA and protein levels of Mfn2. Silencing Notch1 inhibited the action of ginsenoside Rg_1, decreased the mRNA and protein levels of Notch1 and Mfn1, and increased the mRNA and protein levels of Mfn2. In summary, ginsenoside Rg_1 regulated mitochondrial fusion through the Notch1 pathway to alleviate H/R injury in HL-1 cells.
Ginsenosides/pharmacology*
;
Receptor, Notch1/genetics*
;
Signal Transduction/drug effects*
;
Mice
;
Animals
;
Mitochondrial Dynamics/drug effects*
;
Mitochondria/metabolism*
;
Cell Line
;
Reactive Oxygen Species/metabolism*
;
Oxygen/metabolism*
;
Cell Hypoxia/drug effects*
;
Cell Survival/drug effects*
;
Membrane Potential, Mitochondrial/drug effects*
;
Humans
6.Impact of admission-blood-glucose-to-albumin ratio on all-cause mortality and renal prognosis in critical patients with coronary artery disease: insights from the MIMIC-IV database.
Yong HONG ; Bo-Wen ZHANG ; Jing SHI ; Ruo-Xin MIN ; Ding-Yu WANG ; Jiu-Xu KAN ; Yun-Long GAO ; Lin-Yue PENG ; Ming-Lu XU ; Ming-Ming WU ; Yue LI ; Li SHENG
Journal of Geriatric Cardiology 2025;22(6):563-577
BACKGROUND:
Blood glucose and serum albumin have been associated with cardiovascular disease prognosis, but the impact of admission-blood-glucose-to-albumin ratio (AAR) on adverse outcomes in critical ill coronary artery disease (CAD) patients was not investigated.
METHODS:
Patients diagnosed with CAD were non-consecutively selected from the MIMIC-IV database and categorized into quartiles based on their AAR. The primary outcome was 1-year mortality, and secondary endpoints were in-hospital mortality, acute kidney injury (AKI), and renal replacement therapy (RRT). A restricted cubic splines model and Cox proportional hazard models assessed the association between AAR and adverse outcomes in CAD patients. Kaplan-Meier survival analysis determined differences in endpoints across subgroups.
RESULTS:
A total of 8360 patients were included. There were 726 patients (8.7%) died in the hospital and 1944 patients (23%) died at 1 year. The incidence of AKI and RRT was 63% and 4.3%, respectively. High AAR was markedly associated with in-hospital mortality (HR = 1.587, P = 0.003), 1-year mortality (HR = 1.502, P < 0.001), AKI incidence (HR = 1.579, P < 0.001), and RRT (HR = 1.640, P < 0.016) in CAD patients in the completely adjusted Cox proportional hazard model. Kaplan-Meier survival analysis noted substantial differences in all endpoints based on AAR quartiles. Stratified analysis and interaction test demonstrated stable correlations between AAR and outcomes.
CONCLUSIONS
The results highlight that AAR may be a potential indicator for assessing in-hospital mortality, 1-year mortality, and adverse renal prognosis in critical CAD patients.
7.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
8.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
9.Enhanced radiotheranostic targeting of integrin α5β1 with PEGylation-enabled peptide multidisplay platform (PEGibody): A strategy for prolonged tumor retention with fast blood clearance.
Siqi ZHANG ; Xiaohui MA ; Jiang WU ; Jieting SHEN ; Yuntao SHI ; Xingkai WANG ; Lin XIE ; Xiaona SUN ; Yuxuan WU ; Hao TIAN ; Xin GAO ; Xueyao CHEN ; Hongyi HUANG ; Lu CHEN ; Xuekai SONG ; Qichen HU ; Hailong ZHANG ; Feng WANG ; Zhao-Hui JIN ; Ming-Rong ZHANG ; Rui WANG ; Kuan HU
Acta Pharmaceutica Sinica B 2025;15(2):692-706
Peptide-based radiopharmaceuticals targeting integrin α5β1 show promise for precise tumor diagnosis and treatment. However, current peptide-based radioligands that target α5β1 demonstrate inadequate in vivo performance owing to limited tumor retention. The use of PEGylation to enhance the tumor retention of radiopharmaceuticals by prolonging blood circulation time poses a risk of increased blood toxicity. Therefore, a PEGylation strategy that boosts tumor retention while minimizing blood circulation time is urgently needed. Here, we developed a PEGylation-enabled peptide multidisplay platform (PEGibody) for PR_b, an α5β1 targeting peptide. PEGibody generation involved PEGylation and self-assembly. [64Cu]QM-2303 PEGibodies displayed spherical nanoparticles ranging from 100 to 200 nm in diameter. Compared with non-PEGylated radioligands, [64Cu]QM-2303 demonstrated enhanced tumor retention time due to increased binding affinity and stability. Importantly, the biodistribution analysis confirmed rapid clearance of [64Cu]QM-2303 from the bloodstream. Administration of a single dose of [177Lu]QM-2303 led to robust antitumor efficacy. Furthermore, [64Cu]/[177Lu]QM-2303 exhibited low hematological and organ toxicity in both healthy and tumor-bearing mice. Therefore, this study presents a PEGibody-based radiotheranostic approach that enhances tumor retention time and provides long-lasting antitumor effects without prolonging blood circulation lifetime. The PEGibody-based radiopharmaceutical [64Cu]/[177Lu]QM-2303 shows great potential for positron emission tomography imaging-guided targeted radionuclide therapy for α5β1-overexpressing tumors.
10.Fibroblast activation protein targeting radiopharmaceuticals: From drug design to clinical translation.
Yuxuan WU ; Xingkai WANG ; Xiaona SUN ; Xin GAO ; Siqi ZHANG ; Jieting SHEN ; Hao TIAN ; Xueyao CHEN ; Hongyi HUANG ; Shuo JIANG ; Boyang ZHANG ; Yingzi ZHANG ; Minzi LU ; Hailong ZHANG ; Zhicheng SUN ; Ruping LIU ; Hong ZHANG ; Ming-Rong ZHANG ; Kuan HU ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(9):4511-4542
The activation proteins released by fibroblasts in the tumor microenvironment regulate tumor growth, migration, and treatment response, thereby influencing tumor progression and therapeutic outcomes. Owing to the proliferation and metastasis of tumors, fibroblast activation protein (FAP) is typically highly expressed in the tumor stroma, whereas it is nearly absent in adult normal tissues and benign lesions, making it an attractive target for precision medicine. Radiolabeled agents targeting FAP have the potential for targeted cancer diagnosis and therapy. This comprehensive review aims to describe the evolution of FAPI-based radiopharmaceuticals and their structural optimization. Within its scope, this review summarizes the advances in the use of radiolabeled small molecule inhibitors for tumor imaging and therapy as well as the modification strategies for FAPIs, combined with insights from structure-activity relationships and clinical studies, providing a valuable perspective for radiopharmaceutical clinical development and application.

Result Analysis
Print
Save
E-mail