1.Temporal trend in mortality due to congenital heart disease in China from 2008 to 2021.
Youping TIAN ; Xiaojing HU ; Qing GU ; Miao YANG ; Pin JIA ; Xiaojing MA ; Xiaoling GE ; Quming ZHAO ; Fang LIU ; Ming YE ; Weili YAN ; Guoying HUANG
Chinese Medical Journal 2025;138(6):693-701
BACKGROUND:
Congenital heart disease (CHD) is a leading cause of birth defect-related mortality. However, more recent CHD mortality data for China are lacking. Additionally, limited studies have evaluated sex, rural-urban, and region-specific disparities of CHD mortality in China.
METHODS:
We designed a population-based study using data from the Dataset of National Mortality Surveillance in China between 2008 and 2021. We calculated age-adjusted CHD mortality using the sixth census data of China in 2010 as the standard population. We assessed the temporal trends in CHD mortality by age, sex, area, and region from 2008 to 2021 using the joinpoint regression model.
RESULTS:
From 2008 to 2021, 33,534 deaths were attributed to CHD. The period witnessed a two-fold decrease in the age-adjusted CHD mortality from 1.61 to 0.76 per 100,000 persons (average annual percent change [AAPC] = -5.90%). Females tended to have lower age-adjusted CHD mortality than males, but with a similar decline rate from 2008 to 2021 (females: AAPC = -6.15%; males: AAPC = -5.84%). Similar AAPC values were observed among people living in urban (AAPC = -6.64%) and rural (AAPC = -6.12%) areas. Eastern regions experienced a more pronounced decrease in the age-adjusted CHD mortality (AAPC = -7.86%) than central (AAPC = -5.83%) and western regions (AAPC = -3.71%) between 2008 and 2021. Approximately half of the deaths (46.19%) due to CHD occurred during infancy. The CHD mortality rates in 2021 were lower than those in 2008 for people aged 0-39 years, with the largest decrease observed among children aged 1-4 years (AAPC = -8.26%), followed by infants (AAPC = -7.01%).
CONCLUSIONS
CHD mortality in China has dramatically decreased from 2008 to 2021. The slower decrease in CHD mortality in the central and western regions than in the eastern regions suggested that public health policymakers should pay more attention to health resources and health education for central and western regions.
Humans
;
Heart Defects, Congenital/mortality*
;
Male
;
Female
;
China/epidemiology*
;
Infant
;
Child, Preschool
;
Adult
;
Child
;
Adolescent
;
Infant, Newborn
;
Middle Aged
;
Young Adult
;
Aged
;
Rural Population
2.CXCR3 counteracts cisplatin-induced muscle atrophy by regulating E3 ubiquitin ligases, myogenic factors, and fatty acid β-oxidation pathways.
Miao-Miao XU ; Xiao-Guang LIU ; Li-Ming LU ; Zhao-Wei LI
Acta Physiologica Sinica 2025;77(2):255-266
This study aims to explore the role and mechanism of CXC chemokine receptor 3 (CXCR3) in cisplatin-induced skeletal muscle atrophy. Wild-type mice were divided into two groups: cisplatin group and control group (treated by normal saline). The results showed that, compared to the control group, the expression levels of CXCR3 mRNA and protein were significantly up-regulated in the skeletal muscle of the cisplatin group, suggesting that CXCR3 may play an important role in the model of cisplatin-induced skeletal muscle atrophy. To further investigate its role and potential mechanisms, CXCR3 knockout mice and wild-type mice were treated with cisplatin to induce skeletal muscle atrophy. The results revealed that CXCR3 knockout not only failed to alleviate cisplatin-induced skeletal muscle atrophy, but also further reduced body weight, skeletal muscle mass, and muscle fiber cross-sectional area. Further analysis showed that, in the cisplatin-induced muscle atrophy model, CXCR3 knockout significantly up-regulated the expression levels of E3 ubiquitin ligases in skeletal muscle and down-regulated the expression levels of myogenic regulatory factors. To explore the molecular mechanism by which CXCR3 gene deletion exacerbated cisplatin-induced skeletal muscle atrophy, transcriptomic sequencing was performed on the atrophied skeletal muscles of wild-type and CXCR3 knockout mice. The results showed that, compared to wild-type mice, 14 genes were significantly up-regulated and 12 genes were significantly down-regulated in the skeletal muscle of CXCR3 knockout mice. Gene set enrichment analysis (GSEA) revealed a significant enrichment of genes related to fatty acid β-oxidation. Quantitative real-time PCR validation results were consistent with the transcriptomic sequencing results. These findings suggest that CXCR3 may counteract cisplatin-induced skeletal muscle atrophy by up-regulating E3 ubiquitin ligases, down-regulating myogenic regulatory factors, and enhancing the recruitment of fatty acid β-oxidation-related genes.
Animals
;
Cisplatin/adverse effects*
;
Muscular Atrophy/physiopathology*
;
Mice
;
Receptors, CXCR3/metabolism*
;
Ubiquitin-Protein Ligases/metabolism*
;
Mice, Knockout
;
Oxidation-Reduction
;
Fatty Acids/metabolism*
;
Muscle, Skeletal/metabolism*
;
Mice, Inbred C57BL
;
Male
3.Exercise preconditioning alleviates motor deficits in MPTP-induced Parkinsonian mice by improving mitochondrial function.
Miao-Miao XU ; Dan-Ting HU ; Qiao ZHANG ; Xiao-Guang LIU ; Zhao-Wei LI ; Li-Ming LU
Acta Physiologica Sinica 2025;77(3):419-431
Parkinson's disease (PD) is a common neurodegenerative disorder mainly related to mitochondrial dysfunction of dopaminergic neurons in the midbrain substantia nigra. This study aimed to investigate the effects of exercise preconditioning on motor deficits and mitochondrial function in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sedentary + saline (SS), sedentary + MPTP (SM), exercise + saline (ES), and exercise + MPTP (EM) groups. Mice in the ES and EM groups received 4 weeks of treadmill training, and then SM and EM groups were treated with MPTP for 5 days. Motor function was assessed by behavioral tests, and morphological and functional changes in dopaminergic neurons and mitochondria in the substantia nigra of the midbrain were evaluated using immunohistochemistry, Western blot, and transmission electron microscopy technology. The results showed that, compared with the SM group, the EM group exhibited significantly improved motor ability, up-regulated protein expression levels of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the midbrain, and down-regulated protein expression of α-synuclein (α-Syn) in the mitochondria of substantia nigra. Compared with the SM group, the EM group showed up-regulated protein expression levels of mitochondrial fusion proteins, including optical atrophy protein 1 (OPA1) and mitofusin 2 (MFN2), and biogenesis-related proteins, including peroxisome proliferator activated receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (TFAM), while the protein expression levels of dynamin-related protein 1 (DRP1) and mitochondrial fission protein 1 (FIS1) were significantly down-regulated. Compared with the SM group, the EM group showed significantly reduced damage to substantia nigra mitochondria, restored mitochondrial membrane potential and ATP production, and decreased levels of reactive oxygen species (ROS). These results suggest that 4-week treadmill pre-training can alleviate MPTP-induced motor impairments in PD mice by improving mitochondrial function, providing a theoretical basis for early exercise-based prevention of PD.
Animals
;
Male
;
Physical Conditioning, Animal/physiology*
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria/physiology*
;
Dopaminergic Neurons
;
MPTP Poisoning/physiopathology*
;
Substantia Nigra
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
4.Research progress on chemical constituents, pharmacological effects of Rubi Fructus and predictive analysis of its quality markers.
Bao-Song LIU ; Er-Wei YU ; Ying-Ying SUN ; Yao-Yu SONG ; Ke-Han JIANG ; Ya-Gang SONG ; Ming-San MIAO ; Meng-Fan PENG
China Journal of Chinese Materia Medica 2025;50(4):922-933
Rubi Fructus has a long history of medicinal and edible use in China. It contains chemical components such as terpenes, flavonoids, phenolic acids, fatty acids, and alkaloids, and possesses various pharmacological activities, including antioxidant, anti-inflammatory, hypoglycemic, anti-tumor, anti-osteoporosis, and liver-protective effects. Rubi Fructus is widely applied in medical, health, and food fields. The quality of Rubi Fructus can directly affect the safety and effectiveness of clinical medication. Therefore, this article reviews the research progress on the chemical constituents and pharmacological effects of Rubi Fructus. Based on the concept of traditional Chinese medicine(TCM) quality markers(Q-markers), the article explores the screening and determination of Q-markers for Rubi Fructus from various aspects, including plant kinship, traditional efficacy, medicinal properties, measurability of chemical composition, different processing methods, producing areas, harvesting periods, and planting conditions. The components ellagic acid, kaempferol, quercetin, kaempferol-3-O-rutinoside, rutin, astragalin, tiliroside, and hyperoside are preliminarily proposed as Q-markers for Rubi Fructus, providing a reference for the quality control of Rubi Fructus.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Rubus/chemistry*
;
Fruit/chemistry*
;
Quality Control
;
Animals
5.Review of chemical constituents, pharmacological effects, and quality control status of Eucommiae Cortex and prediction of its Q-markers.
Meng-Fan PENG ; Bao-Song LIU ; Pei-Pei YAN ; Cai-Xia LI ; Xiao-Fang ZHANG ; Yi ZHENG ; Ya-Gang SONG ; Tong LIU ; Lei YANG ; Ming-San MIAO
China Journal of Chinese Materia Medica 2025;50(4):946-958
Eucommiae Cortex, the dried bark of Eucommia ulmoides( Eucommiaceae), has both medicinal and edible values.Modern research has shown that Eucommiae Cortex contains various components such as flavonoids, lignans, iridoids, phenolic acids,terpenoids, and steroids, which have anti-osteoporosis, antioxidant, anti-inflammatory, blood glucose-lowering, and gastrointestinal tract-protecting effects. Eucommiae Cortex has applications in multiple fields such as healthcare, industry, and animal husbandry,demonstrating broad development prospects. This article reviews the chemical constituents, pharmacological effects, and quality control status of Eucommiae Cortex. Furthermore, according to the concept of quality marker(Q-marker), this article predicts the Q-markers of Eucommiae Cortex from traditional medicinal properties, traditional medicinal effects, new medicinal effects, measurability of chemical components, compatibility, harvesting periods, and geographical origins. The components such as pinoresinol diglucoside,chlorogenic acid, caffeic acid, quercetin, baicalein, baicalin, olivil, coniferyl ferulate, and kaempferol can be used as Q-markers for Eucommiae Cortex, which provide reference for establishing a systematic quality control system for Eucommiae Cortex.
Eucommiaceae/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Quality Control
;
Humans
;
Animals
6.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
7.Genetic diversity analysis and DNA fingerprinting of Artemisia argyi germplasm resources based on EST-SSR molecular markers.
Yu-Yang MA ; Chang-Jie CHEN ; Ming-Xing WANG ; Yan FANG ; Yu-Huan MIAO ; Da-Hui LIU
China Journal of Chinese Materia Medica 2025;50(9):2356-2364
This study investigates the genetic diversity and evolutionary relationships of different Artemisia argyi germplasm resources to provide a basis for germplasm identification, variety selection, and resource protection. A total of 192 germplasm resources of A. argyi were studied, and EST-based simple sequence repeat(EST-SSR) primers were designed based on transcriptomic data of A. argyi. Polymerase chain reaction(PCR) amplification was performed on these resources, followed by fluorescence capillary electrophoresis to detect genetic diversity and construct DNA fingerprints. From 197 pairs of primers designed, 28 pairs with polymorphic and clear bands were selected. A total of 278 alleles were detected, with an average of 9.900 0 alleles per primer pair and an average effective number of alleles of 1.407 2. The Shannon's diversity index(I) for the A. argyi germplasm resources ranged from 0.148 1 to 0.418 0, with an average of 0.255 7. The polymorphism information content(PIC) ranged from 0.454 5 to 0.878 0, with an average of 0.766 9, showing high polymorphism. Cluster analysis divided the A. argyi germplasm resources into three major groups: Group Ⅰ contained 136 germplasm samples, Group Ⅱ contained 45, and Group Ⅲ contained 11. Principal component analysis also divided the resources into three groups, which was generally consistent with the clustering results. Mantel test results showed that the genetic variation in A. argyi populations was to some extent influenced by geographic distance, but the effect was minimal. Structure analysis showed that 190 germplasm materials had Q≥ 0.6, indicating that these germplasm materials had a relatively homogeneous genetic origin. Furthermore, 8 core primer pairs were selected from the 28 designed primers, which could distinguish various germplasm types. Using these 8 core primers, DNA fingerprints for the 192 A. argyi germplasm resources were successfully constructed. EST-SSR molecular markers can be used to study the genetic diversity and phylogenetic relationships of A. argyi, providing theoretical support for the identification and molecular-assisted breeding of A. argyi germplasm resources.
Artemisia/classification*
;
Microsatellite Repeats
;
Genetic Variation
;
Expressed Sequence Tags
;
DNA Fingerprinting
;
Phylogeny
;
Polymorphism, Genetic
;
DNA, Plant/genetics*
;
Genetic Markers
8.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
9.Research progress in application characteristics of plant-derived exosome-like nanovesicles in intestinal diseases.
Yuan ZUO ; Jin-Ying ZHANG ; Sheng-Dong XU ; Shuo TIAN ; Ming-San MIAO
China Journal of Chinese Materia Medica 2025;50(14):3868-3877
Inflammatory bowel disease is a chronic, idiopathic, and recurrent gastrointestinal disorder with an unclear etiology and uncertain pathogenesis. Traditional treatment strategies rely on frequent administration of high doses of medication to reduce inflammation, whereas these approaches have limitations and may induce potential complications. Therefore, finding more effective and safe therapeutic drugs and methods is particularly important. Plant-derived exosome-like nanovesicles(PDELNs) are nano-sized vesicles with a lipid bilayer structure that are secreted by plant cells. The bioactive molecules contained within, such as lipids, proteins, and nucleic acids, can serve as information carriers, playing a role in the transmission of information and substances between cells and across species. PDELNs can carry and transfer their own bioactive substances or act as carriers for delivering other active components or drugs. Due to the high biocompatibility, low toxicity, and significant bioactivity, PDELNs have garnered widespread attention. Compared with other exosomes, PDELNs are not destroyed in the gastrointestinal tract when taken orally and can reach the intestines. This unique property makes PDELNs a promising oral nanodrug for treating intestinal diseases, showing great potential in this area. This article reviews recent research literature on PDELNs regarding the physicochemical characteristics, extraction and purification methods, functions, application characteristics and mechanisms in the treatment of intestinal diseases, and use as a carrier for treating intestinal diseases, aiming to provide a reference for the use of PDELNs in the treatment of intestinal diseases.
Humans
;
Exosomes/metabolism*
;
Animals
;
Intestinal Diseases/metabolism*
;
Plants/metabolism*
;
Drug Carriers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Drug Delivery Systems
;
Nanoparticles/chemistry*
10.Molecular targeted therapy for progressive low-grade gliomas in children.
Yan-Ling SUN ; Miao LI ; Jing-Jing LIU ; Wen-Chao GAO ; Yue-Fang WU ; Lu-Lu WAN ; Si-Qi REN ; Shu-Xu DU ; Wan-Shui WU ; Li-Ming SUN
Chinese Journal of Contemporary Pediatrics 2025;27(6):682-689
OBJECTIVES:
To evaluate the efficacy of molecular targeted agents in children with progressive pediatric low-grade gliomas (pLGG).
METHODS:
A retrospective analysis was conducted on pLGG patients treated with oral targeted therapies at the Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, from July 2021. Treatment responses and safety profiles were assessed.
RESULTS:
Among the 20 enrolled patients, the trametinib group (n=12, including 11 cases with BRAF fusions and 1 case with BRAF V600E mutation) demonstrated 4 partial responses (33%) and 2 minor responses (17%), with a median time to response of 3.0 months. In the vemurafenib group (n=6, all with BRAF V600E mutation), 5 patients achieved partial responses (83%), showing a median time to response of 1.0 month. Comparative analysis revealed no statistically significant difference in progression-free survival rates between the two treatment groups (P>0.05). The median duration of clinical benefit (defined as partial response + minor response + stable disease) was 11.0 months for vemurafenib and 18.0 months for trametinib. Two additional cases, one with ATM mutation treated with olaparib for 24 months and one with NF1 mutation receiving everolimus for 21 months, discontinued treatment due to sustained disease stability. No severe adverse events were observed in any treatment group.
CONCLUSIONS
Molecular targeted therapy demonstrates clinical efficacy with favorable tolerability in pLGG. Vemurafenib achieves high response rates and induces early tumor shrinkage in patients with BRAF V600E mutations, supporting its utility as a first-line therapy.
Humans
;
Glioma/genetics*
;
Male
;
Female
;
Child
;
Child, Preschool
;
Retrospective Studies
;
Brain Neoplasms/genetics*
;
Molecular Targeted Therapy/adverse effects*
;
Adolescent
;
Infant
;
Proto-Oncogene Proteins B-raf/genetics*
;
Pyrimidinones/therapeutic use*
;
Mutation

Result Analysis
Print
Save
E-mail