1.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.
2.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.
3.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.
4.Comparative analysis of body mass index and obesity-related anthropometric indices for mortality prediction: a study of the Namwon and Dong-gu cohort in Korea
Ye Rim KIM ; Min-Ho SHIN ; Young-Hoon LEE ; Seong-Woo CHOI ; Hae-Sung NAM ; Jeong-Ho YANG ; Sun-Seog KWEON
Epidemiology and Health 2024;46(1):e2024066-
OBJECTIVES:
This study investigated the associations between several obesity-related anthropometric indices and mortality in middle-aged and elderly populations to compare the indices’ predictive ability with that of the body mass index (BMI).
METHODS:
We analyzed data on 12 indices calculated from 19,805 community-based cohort participants (average age, 63.27 years; median follow-up, 13.49 years). Each index was calculated using directly measured values of height, weight, waist circumference (WC), and hip circumference (HC). We calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for each index using Cox regression and evaluated mortality prediction with the Harrell concordance index (c-index).
RESULTS:
Adding anthropometric indices to the basic mortality model (c-index, 0.7723; 95% CI, 0.7647 to 0.7799) significantly increased the predictive power of BMI (c-index, 0.7735; 95% CI, 0.7659 to 0.7811), a body shape index (ABSI; c-index, 0.7735; 95% CI, 0.7659 to 0.7810), weight-adjusted waist index (WWI; c-index, 0.7731; 95% CI, 0.7656 to 0.7807), and waist to hip index (WHI; c-index, 0.7733; 95% CI, 0.7657 to 0.7809). The differences between the BMI model and the other 3 models were not statistically significant.
CONCLUSIONS
In predicting all-cause mortality, the ABSI, WWI, and WHI models based on WC or HC had stronger predictive power than conventional risk factors but were not significantly different from the BMI model.
5.Comparative analysis of body mass index and obesity-related anthropometric indices for mortality prediction: a study of the Namwon and Dong-gu cohort in Korea
Ye Rim KIM ; Min-Ho SHIN ; Young-Hoon LEE ; Seong-Woo CHOI ; Hae-Sung NAM ; Jeong-Ho YANG ; Sun-Seog KWEON
Epidemiology and Health 2024;46(1):e2024066-
OBJECTIVES:
This study investigated the associations between several obesity-related anthropometric indices and mortality in middle-aged and elderly populations to compare the indices’ predictive ability with that of the body mass index (BMI).
METHODS:
We analyzed data on 12 indices calculated from 19,805 community-based cohort participants (average age, 63.27 years; median follow-up, 13.49 years). Each index was calculated using directly measured values of height, weight, waist circumference (WC), and hip circumference (HC). We calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for each index using Cox regression and evaluated mortality prediction with the Harrell concordance index (c-index).
RESULTS:
Adding anthropometric indices to the basic mortality model (c-index, 0.7723; 95% CI, 0.7647 to 0.7799) significantly increased the predictive power of BMI (c-index, 0.7735; 95% CI, 0.7659 to 0.7811), a body shape index (ABSI; c-index, 0.7735; 95% CI, 0.7659 to 0.7810), weight-adjusted waist index (WWI; c-index, 0.7731; 95% CI, 0.7656 to 0.7807), and waist to hip index (WHI; c-index, 0.7733; 95% CI, 0.7657 to 0.7809). The differences between the BMI model and the other 3 models were not statistically significant.
CONCLUSIONS
In predicting all-cause mortality, the ABSI, WWI, and WHI models based on WC or HC had stronger predictive power than conventional risk factors but were not significantly different from the BMI model.
6.Comparative analysis of body mass index and obesity-related anthropometric indices for mortality prediction: a study of the Namwon and Dong-gu cohort in Korea
Ye Rim KIM ; Min-Ho SHIN ; Young-Hoon LEE ; Seong-Woo CHOI ; Hae-Sung NAM ; Jeong-Ho YANG ; Sun-Seog KWEON
Epidemiology and Health 2024;46(1):e2024066-
OBJECTIVES:
This study investigated the associations between several obesity-related anthropometric indices and mortality in middle-aged and elderly populations to compare the indices’ predictive ability with that of the body mass index (BMI).
METHODS:
We analyzed data on 12 indices calculated from 19,805 community-based cohort participants (average age, 63.27 years; median follow-up, 13.49 years). Each index was calculated using directly measured values of height, weight, waist circumference (WC), and hip circumference (HC). We calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for each index using Cox regression and evaluated mortality prediction with the Harrell concordance index (c-index).
RESULTS:
Adding anthropometric indices to the basic mortality model (c-index, 0.7723; 95% CI, 0.7647 to 0.7799) significantly increased the predictive power of BMI (c-index, 0.7735; 95% CI, 0.7659 to 0.7811), a body shape index (ABSI; c-index, 0.7735; 95% CI, 0.7659 to 0.7810), weight-adjusted waist index (WWI; c-index, 0.7731; 95% CI, 0.7656 to 0.7807), and waist to hip index (WHI; c-index, 0.7733; 95% CI, 0.7657 to 0.7809). The differences between the BMI model and the other 3 models were not statistically significant.
CONCLUSIONS
In predicting all-cause mortality, the ABSI, WWI, and WHI models based on WC or HC had stronger predictive power than conventional risk factors but were not significantly different from the BMI model.
7.Comparative analysis of body mass index and obesity-related anthropometric indices for mortality prediction: a study of the Namwon and Dong-gu cohort in Korea
Ye Rim KIM ; Min-Ho SHIN ; Young-Hoon LEE ; Seong-Woo CHOI ; Hae-Sung NAM ; Jeong-Ho YANG ; Sun-Seog KWEON
Epidemiology and Health 2024;46(1):e2024066-
OBJECTIVES:
This study investigated the associations between several obesity-related anthropometric indices and mortality in middle-aged and elderly populations to compare the indices’ predictive ability with that of the body mass index (BMI).
METHODS:
We analyzed data on 12 indices calculated from 19,805 community-based cohort participants (average age, 63.27 years; median follow-up, 13.49 years). Each index was calculated using directly measured values of height, weight, waist circumference (WC), and hip circumference (HC). We calculated hazard ratios (HRs) and 95% confidence intervals (CIs) for each index using Cox regression and evaluated mortality prediction with the Harrell concordance index (c-index).
RESULTS:
Adding anthropometric indices to the basic mortality model (c-index, 0.7723; 95% CI, 0.7647 to 0.7799) significantly increased the predictive power of BMI (c-index, 0.7735; 95% CI, 0.7659 to 0.7811), a body shape index (ABSI; c-index, 0.7735; 95% CI, 0.7659 to 0.7810), weight-adjusted waist index (WWI; c-index, 0.7731; 95% CI, 0.7656 to 0.7807), and waist to hip index (WHI; c-index, 0.7733; 95% CI, 0.7657 to 0.7809). The differences between the BMI model and the other 3 models were not statistically significant.
CONCLUSIONS
In predicting all-cause mortality, the ABSI, WWI, and WHI models based on WC or HC had stronger predictive power than conventional risk factors but were not significantly different from the BMI model.
8.2023 Clinical Practice Guidelines for Diabetes Management in Korea: Full Version Recommendation of the Korean Diabetes Association
Jun Sung MOON ; Shinae KANG ; Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; Yoon Ju SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Jaehyun BAE ; Eonju JEON ; Ji Min KIM ; Seon Mee KANG ; Jung Hwan PARK ; Jae-Seung YUN ; Bong-Soo CHA ; Min Kyong MOON ; Byung-Wan LEE
Diabetes & Metabolism Journal 2024;48(4):546-708
9.Efficacy of Limited Dose Modifications for Palbociclib-Related Grade 3 Neutropenia in Hormone Receptor–Positive Metastatic Breast Cancer
Seul-Gi KIM ; Min Hwan KIM ; Sejung PARK ; Gun Min KIM ; Jee Hung KIM ; Jee Ye KIM ; Hyung Seok PARK ; Seho PARK ; Byeong Woo PARK ; Seung Il KIM ; Jung Hwan JI ; Joon JEONG ; Kabsoo SHIN ; Jieun LEE ; Hyung-Don KIM ; Kyung Hae JUNG ; Joohyuk SOHN
Cancer Research and Treatment 2023;55(4):1198-1209
Purpose:
Frequent neutropenia hinders uninterrupted palbociclib treatment in patients with hormone receptor (HR)–positive breast cancer. We compared the efficacy outcomes in multicenter cohorts of patients with metastatic breast cancer (mBC) receiving palbociclib following conventional dose modification or limited modified schemes for afebrile grade 3 neutropenia.
Materials and Methods:
Patients with HR-positive, human epidermal growth factor receptor 2–negative mBC (n=434) receiving palbociclib with letrozole as first-line therapy were analyzed and classified based on neutropenia grade and afebrile grade 3 neutropenia management as follows: group 1 (maintained palbociclib dose, limited scheme), group 2 (dose delay or reduction, conventional scheme), group 3 (no afebrile grade 3 neutropenia event), and group 4 (grade 4 neutropenia event). The primary and secondary endpoints were progression-free survival (PFS) between groups 1 and 2 and PFS, overall survival, and safety profiles among all groups.
Results:
During follow-up (median 23.7 months), group 1 (2-year PFS, 67.9%) showed significantly longer PFS than did group 2 (2-year PFS, 55.3%; p=0.036), maintained across all subgroups, and upon adjustment of the factors. Febrile neutropenia occurred in one and two patients of group 1 and group 2, respectively, without mortality.
Conclusion
Limited dose modification for palbociclib-related grade 3 neutropenia may lead to longer PFS, without increasing toxicity, than the conventional dose scheme.
10.2023 Clinical Practice Guidelines for Diabetes Mellitus of the Korean Diabetes Association
Jong Han CHOI ; Kyung Ae LEE ; Joon Ho MOON ; Suk CHON ; Dae Jung KIM ; Hyun Jin KIM ; Nan Hee KIM ; Ji A SEO ; Mee Kyoung KIM ; Jeong Hyun LIM ; YoonJu SONG ; Ye Seul YANG ; Jae Hyeon KIM ; You-Bin LEE ; Junghyun NOH ; Kyu Yeon HUR ; Jong Suk PARK ; Sang Youl RHEE ; Hae Jin KIM ; Hyun Min KIM ; Jung Hae KO ; Nam Hoon KIM ; Chong Hwa KIM ; Jeeyun AHN ; Tae Jung OH ; Soo-Kyung KIM ; Jaehyun KIM ; Eugene HAN ; Sang-Man JIN ; Won Suk CHOI ; Min Kyong MOON ; ;
Diabetes & Metabolism Journal 2023;47(5):575-594
In May 2023, the Committee of Clinical Practice Guidelines of the Korean Diabetes Association published the revised clinical practice guidelines for Korean adults with diabetes and prediabetes. We incorporated the latest clinical research findings through a comprehensive systematic literature review and applied them in a manner suitable for the Korean population. These guidelines are designed for all healthcare providers nationwide, including physicians, diabetes experts, and certified diabetes educators who manage patients with diabetes or individuals at risk of developing diabetes. Based on recent changes in international guidelines and the results of a Korean epidemiological study, the recommended age for diabetes screening has been lowered. In collaboration with the relevant Korean medical societies, recently revised guidelines for managing hypertension and dyslipidemia in patients with diabetes have been incorporated into this guideline. An abridgment containing practical information on patient education and systematic management in the clinic was published separately.

Result Analysis
Print
Save
E-mail