1.Nurses’ Experience in COVID-19 Patient Care
Soojin CHUNG ; Mihyeon SEONG ; Ju-young PARK
Journal of Korean Academy of Nursing Administration 2022;28(2):142-153
Purpose:
This study aimed to explore nurses’ experience in caring for COVID-19 patients.
Methods:
A total of 10 nurses working in a COVID-19 ward of a public hospital in South Korea were recruited using purposeful sampling. Individual telephone interviews were conducted and then transcribed verbatim. Data were analyzed using qualitative content analysis.
Results:
Two categories of nurses’ experience in caring for COVID-19 patients emerged; “unstable psychological status” and “adaptation and self-esteem”. “Shortage of staff due to the increase in infected people”, “poor environment due to the urgent construction of a COVID-19 ward”, “unstable operating system”, and “excessive demands and verbal abuse from patients” were “obstacles”, while “cooperation and consideration between colleagues” and “interest and support from the manager” were found to be “sources to boost morale” for nurses in caring for COVID-19 patients.
Conclusion
This study can be fundamental data for a deeper understanding of the experiences and challenges faced by frontline nurses caring for COVID-19 patients. It is necessary to provide psychological support for nurses and establish a well-structured nursing care system in order to fight a pandemic such as COVID-19.
2.Generative AI-Based Nursing Diagnosis and Documentation Recommendation Using Virtual Patient Electronic Nursing Record Data
Hongshin JU ; Minsul PARK ; Hyeonsil JEONG ; Youngjin LEE ; Hyeoneui KIM ; Mihyeon SEONG ; Dongkyun LEE
Healthcare Informatics Research 2025;31(2):156-165
Objectives:
Nursing documentation consumes approximately 30% of nurses’ professional time, making improvements in efficiency essential for patient safety and workflow optimization. This study compares traditional nursing documentation methods with a generative artificial intelligence (AI)-based system, evaluating its effectiveness in reducing documentation time and ensuring the accuracy of AI-suggested entries. Furthermore, the study aims to assess the system’s impact on overall documentation efficiency and quality.
Methods:
Forty nurses with a minimum of 6 months of clinical experience participated. In the pre-assessment phase, they documented a nursing scenario using traditional electronic nursing records (ENRs). In the post-assessment phase, they used the SmartENR AI version, developed with OpenAI’s ChatGPT 4.0 API and customized for domestic nursing standards; it supports NANDA, SOAPIE, Focus DAR, and narrative formats. Documentation was evaluated on a 5-point scale for accuracy, comprehensiveness, usability, ease of use, and fluency.
Results:
Participants averaged 64 months of clinical experience. Traditional documentation required 467.18 ± 314.77 seconds, whereas AI-assisted documentation took 182.68 ± 99.71 seconds, reducing documentation time by approximately 40%. AI-generated documentation received scores of 3.62 ± 1.29 for accuracy, 4.13 ± 1.07 for comprehensiveness, 3.50 ± 0.93 for usability, 4.80 ± 0.61 for ease of use, and 4.50 ± 0.88 for fluency.
Conclusions
Generative AI substantially reduces the nursing documentation workload and increases efficiency. Nevertheless, further refinement of AI models is necessary to improve accuracy and ensure seamless integration into clinical practice with minimal manual modifications. This study underscores AI’s potential to improve nursing documentation efficiency and accuracy in future clinical settings.
3.Generative AI-Based Nursing Diagnosis and Documentation Recommendation Using Virtual Patient Electronic Nursing Record Data
Hongshin JU ; Minsul PARK ; Hyeonsil JEONG ; Youngjin LEE ; Hyeoneui KIM ; Mihyeon SEONG ; Dongkyun LEE
Healthcare Informatics Research 2025;31(2):156-165
Objectives:
Nursing documentation consumes approximately 30% of nurses’ professional time, making improvements in efficiency essential for patient safety and workflow optimization. This study compares traditional nursing documentation methods with a generative artificial intelligence (AI)-based system, evaluating its effectiveness in reducing documentation time and ensuring the accuracy of AI-suggested entries. Furthermore, the study aims to assess the system’s impact on overall documentation efficiency and quality.
Methods:
Forty nurses with a minimum of 6 months of clinical experience participated. In the pre-assessment phase, they documented a nursing scenario using traditional electronic nursing records (ENRs). In the post-assessment phase, they used the SmartENR AI version, developed with OpenAI’s ChatGPT 4.0 API and customized for domestic nursing standards; it supports NANDA, SOAPIE, Focus DAR, and narrative formats. Documentation was evaluated on a 5-point scale for accuracy, comprehensiveness, usability, ease of use, and fluency.
Results:
Participants averaged 64 months of clinical experience. Traditional documentation required 467.18 ± 314.77 seconds, whereas AI-assisted documentation took 182.68 ± 99.71 seconds, reducing documentation time by approximately 40%. AI-generated documentation received scores of 3.62 ± 1.29 for accuracy, 4.13 ± 1.07 for comprehensiveness, 3.50 ± 0.93 for usability, 4.80 ± 0.61 for ease of use, and 4.50 ± 0.88 for fluency.
Conclusions
Generative AI substantially reduces the nursing documentation workload and increases efficiency. Nevertheless, further refinement of AI models is necessary to improve accuracy and ensure seamless integration into clinical practice with minimal manual modifications. This study underscores AI’s potential to improve nursing documentation efficiency and accuracy in future clinical settings.
4.Generative AI-Based Nursing Diagnosis and Documentation Recommendation Using Virtual Patient Electronic Nursing Record Data
Hongshin JU ; Minsul PARK ; Hyeonsil JEONG ; Youngjin LEE ; Hyeoneui KIM ; Mihyeon SEONG ; Dongkyun LEE
Healthcare Informatics Research 2025;31(2):156-165
Objectives:
Nursing documentation consumes approximately 30% of nurses’ professional time, making improvements in efficiency essential for patient safety and workflow optimization. This study compares traditional nursing documentation methods with a generative artificial intelligence (AI)-based system, evaluating its effectiveness in reducing documentation time and ensuring the accuracy of AI-suggested entries. Furthermore, the study aims to assess the system’s impact on overall documentation efficiency and quality.
Methods:
Forty nurses with a minimum of 6 months of clinical experience participated. In the pre-assessment phase, they documented a nursing scenario using traditional electronic nursing records (ENRs). In the post-assessment phase, they used the SmartENR AI version, developed with OpenAI’s ChatGPT 4.0 API and customized for domestic nursing standards; it supports NANDA, SOAPIE, Focus DAR, and narrative formats. Documentation was evaluated on a 5-point scale for accuracy, comprehensiveness, usability, ease of use, and fluency.
Results:
Participants averaged 64 months of clinical experience. Traditional documentation required 467.18 ± 314.77 seconds, whereas AI-assisted documentation took 182.68 ± 99.71 seconds, reducing documentation time by approximately 40%. AI-generated documentation received scores of 3.62 ± 1.29 for accuracy, 4.13 ± 1.07 for comprehensiveness, 3.50 ± 0.93 for usability, 4.80 ± 0.61 for ease of use, and 4.50 ± 0.88 for fluency.
Conclusions
Generative AI substantially reduces the nursing documentation workload and increases efficiency. Nevertheless, further refinement of AI models is necessary to improve accuracy and ensure seamless integration into clinical practice with minimal manual modifications. This study underscores AI’s potential to improve nursing documentation efficiency and accuracy in future clinical settings.