1.Electroacupuncture attenuates spinal nerve ligation-induced microglial activation mediated by p38 mitogen-activated protein kinase.
Yi LIANG ; Jun-Ying DU ; Yu-Jie QIU ; Jun-Fan FANG ; Jin LIU ; Jian-Qiao FANG
Chinese journal of integrative medicine 2016;22(9):704-713
OBJECTIVETo investigate whether analgesic effect of electroacupuncture (EA) is affected by p38 mitogen-activated protein kinase (p38 MAPK) on microglia.
METHODSThere were two experiments. The experiment 1: 40 male Sprague-Dawley (SD) rats were randomly divided into the normal, surgery, EA and sham EA groups, and the L5 spinal nerve ligation (SNL) on the right side was used to establish neuropathic pain model. EA was applied to bilateral Zusanli (ST36) and Kunlun (BL60) at 24, 48 and 72 h after SNL for 30 min, once per day. The paw withdrawal thresholds (PWTs) were measured before surgery (as base) and at 24, 25, 49 and 73 h after surgery. Phospho-p38 MAPK (p-p38 MAPK), oxycocin-42 (OX-42, marker of microglia), and glial fibrillary acidic protein (GFAP, marker of astrocyte) in bilateral spinal cord dorsal horn (SCDH) were detected by immunofluorescence, respectively. The experiment 2: 40 male SD rats were cannulated for SNL-induced neuropathic pain, and then were randomly divided into the dimethyl sulfoxide (DMSO), EA plus DMSO, 4-(4-fluorophenyl)-2-(4-methylsulfonylpheny)-5-(4-pyridyl)-1H-imidazole (SB203580) and EA plus SB203580 groups. SB203580 (30 nmol/L) was administered 5 min prior to EA treatment. The PWTs and OX-42 in bilateral SCDH were measured as mentioned above.
RESULTSSNL-induced neuropathic pain reduced PWTs and increased the expression of p-p38 MAPK and OX-42 in bilateral lumbar SCDH of rats (P<0.01). Spinal p-p38 MAPK was only co-localized with OX-42 in our study. EA treatment significantly alleviated SNL-mediated mechanical hyperalgesia, and suppressed the expression of p-p38 MAPK and OX-42 in lumbar SCDH (P<0.05 or P<0.01). Intrathecal injection of low dose SB203580 had no influence on PWTs (P>0.05), but significantly inhibited the expression of OX-42 positive cells in bilateral SCDH (P<0.01 or P<0.05). EA plus SB203580 synergistically increased PWTs, and reduced the expression of bilateral spinal OX-42 (P<0.01 or P<0.05).
CONCLUSIONSThe central mechanism of EA-induced anti-hyperalgesia may be partially associated with the reduced expression of p-p38 MAPK, and subsequently reducing the activation of OX-42 in neuropathic pain. Therefore, EA may be a new complementary and alternative therapy for neuropathic pain.
Animals ; Biomarkers ; metabolism ; CD11b Antigen ; metabolism ; Electroacupuncture ; Fluorescent Antibody Technique ; Hyperalgesia ; pathology ; therapy ; Imidazoles ; pharmacology ; Ligation ; Male ; Microglia ; drug effects ; enzymology ; pathology ; Neuroglia ; drug effects ; metabolism ; Phosphorylation ; drug effects ; Posterior Horn Cells ; drug effects ; enzymology ; pathology ; Pyridines ; pharmacology ; Rats, Sprague-Dawley ; Spinal Nerves ; drug effects ; pathology ; p38 Mitogen-Activated Protein Kinases ; metabolism
2.Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar beta amyloid peptide (1-42)-stimulated microglia.
Ju Hyun MOON ; Soo Yoon KIM ; Hwan Goo LEE ; Seung U KIM ; Yong Beom LEE
Experimental & Molecular Medicine 2008;40(1):11-18
Recent studies have reported that the "cholinergic anti-inflammatory pathway" regulates peripheral inflammatory responses via alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) and that acetylcholine and nicotine regulate the expression of proinflammatory mediators such as TNF-alpha and prostaglandin E2 in microglial cultures. In a previous study we showed that ATP released by beta-amyloid-stimulated microglia induced reactive oxygen species (ROS) production, in a process involving the P2X7 receptor (P2X7R), in an autocrine fashion. These observations led us to investigate whether stimulation by nicotine could regulate fibrillar beta amyloid peptide (1-42) (fA beta(1-42))-induced ROS production by modulating ATP efflux-mediated Ca2+ influx through P2X7R. Nicotine inhibited ROS generation in fA beta(1-42)-stimulated microglial cells, and this inhibition was blocked by mecamylamine, a non-selective nAChR antagonist, and a-bungarotoxin, a selective alpha7 nAChR antagonist. Nicotine inhibited NADPH oxidase activation and completely blocked Ca2+ influx in fA beta(1-42)-stimulated microglia. Moreover, ATP release from fA beta(1-42)-stimulated microglia was significantly suppressed by nicotine treatment. In contrast, nicotine did not inhibit 2',3'-O-(4-benzoyl)-benzoyl ATP (BzATP)-induced Ca2+ influx, but inhibited ROS generation in BzATP-stimulated microglia, indicating an inhibitory effect of nicotine on a signaling process downstream of P2X7R. Taken together, these results suggest that the inhibitory effect of nicotine on ROS production in fA beta(1-42)-stimulated microglia is mediated by indirect blockage of ATP release and by directly altering the signaling process downstream from P2X7R.
Adenosine Triphosphate/analogs & derivatives/metabolism/pharmacology
;
Amyloid/*metabolism
;
Amyloid beta-Protein/*pharmacology
;
Animals
;
Calcium/metabolism
;
Enzyme Activation/drug effects
;
Microglia/cytology/*drug effects/enzymology/*metabolism
;
NADPH Oxidase/metabolism
;
Nicotine/pharmacology
;
Nicotinic Antagonists/pharmacology
;
Peptide Fragments/*pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/*metabolism
;
Receptors, Nicotinic/*metabolism
;
Receptors, Purinergic P2/metabolism
3.Cross talk between P2 purinergic receptors modulates extracellular ATP-mediated interleukin-10 production in rat microglial cells.
Dong Reoyl SEO ; Soo Yoon KIM ; Kyung You KIM ; Hwan Goo LEE ; Ju Hyun MOON ; Jae Souk LEE ; Se Hoon LEE ; Seung U KIM ; Yong Beom LEE
Experimental & Molecular Medicine 2008;40(1):19-26
Previously we demonstrated that ATP released from LPS-activated microglia induced IL-10 expression in a process involving P2 receptors, in an autocrine fashion. Therefore, in the present study we sought to determine which subtype of P2 receptor was responsible for the modulation of IL-10 expression in ATP-stimulated microglia. We found that the patterns of IL-10 production were dose-dependent (1, 10, 100, 1,000 micrometer) and bell-shaped. The concentrations of ATP, ATP-gammaS, ADP, and ADP-beta S that showed maximal IL-10 release were 100, 10, 100, and 100 micrometer respectively. The rank order of agonist potency for IL-10 production was 2'-3'-O-(4-benzoyl)-benzoyl ATP (BzATP) = dATP > 2-methylthio-ADP (2-meSADP). On the other hand, 2-methylthio-ATP (2-meSATP), alpha,beta-methylene ATP (alpha,beta-meATP), UTP, and UDP did not induce the release of IL-10 from microglia. Further, we obtained evidence of crosstalk between P2 receptors, in a situation where intracellular Ca2+ release and/or cAMP-activated PKA were the main contributors to extracellular ATP-(or ADP)-mediated IL-10 expression, and IL-10 production was down- regulated by either MRS2179 (a P2Y1 antagonist) or 5'-AMPS (a P2Y11 antagonist), indicating that both the P2Y1 and P2Y11 receptors are major receptors involved in IL-10 expression. In addition, we found that inhibition of IL-10 production by high concentrations of ATP-gammaS (100 micrometer) was restored by TNP-ATP (an antagonist of the P2X1, P2X3, and P2X4 receptors), and that IL-10 production by 2-meSADP was restored by 2meSAMP (a P2Y12 receptor antagonist) or pertusis toxin (PTX; a Gi protein inhibitor), indicating that the P2X1, P2X3, P2X4 receptor group, or the P2Y12 receptor, negatively modulate the P2Y11 receptor or the P2Y1 receptor, respectively.
Adenosine Diphosphate/analogs & derivatives/pharmacology
;
Adenosine Triphosphate/analogs & derivatives/*pharmacology
;
Adenylate Cyclase/antagonists & inhibitors
;
Animals
;
Calcium/metabolism
;
Chelating Agents/pharmacology
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
;
Enzyme Inhibitors/pharmacology
;
Extracellular Space/drug effects/*metabolism
;
Gene Expression Regulation/drug effects
;
Interleukin-10/*biosynthesis
;
Microglia/*drug effects/enzymology/*metabolism
;
RNA, Messenger/genetics/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptor Cross-Talk/*drug effects
;
Receptors, Purinergic P2/agonists/antagonists & inhibitors/genetics/*metabolism
;
Thionucleotides/pharmacology
4.Protein kinase A mediates microglial activation induced by plasminogen and gangliosides.
Kyoung Jin MIN ; Myung Soon YANG ; Ilo JOU ; Eun hye JOE
Experimental & Molecular Medicine 2004;36(5):461-467
In the injured brain, microglia is known to be activated and produce proinflammatory mediators such as interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and inducible nitric oxide synthase (iNOS). We investigated the role of protein kinase A (PKA) in microglial activation by both plasminogen and gangliosides in rat primary microglia and in the BV2 immortalized murine microglial cell line. Both plasminogen and gangliosides induced IL-1beta, TNF-alpha and iNOS mRNA expression, and that this expression was inhibited by the addition of the PKA inhibitors, KT5720 and H89. Both plasminogen and gangliosides activated PKA and increased the DNA binding activity of the cAMP response element- binding protein (CREB). Furthermore, KT5720 and H89 reduced the DNA binding activities of CREB and NF-kappaB in plasminogen-treated cells. These results suggest that PKA plays an important role in plasminogen and gangliosides- induced microglial activation.
Animals
;
Carbazoles/pharmacology
;
Cell Line
;
Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors/*physiology
;
DNA-Binding Protein, Cyclic AMP-Responsive/metabolism
;
DNA-Binding Proteins/metabolism
;
Gangliosides/pharmacology/*physiology
;
Gene Expression Regulation
;
Indoles/pharmacology
;
Interleukin-1/genetics
;
Isoquinolines/pharmacology
;
Mice
;
Microglia/drug effects/*enzymology/*immunology
;
NF-kappa B/metabolism
;
Nitric-Oxide Synthase/genetics
;
Plasminogen/pharmacology/*physiology
;
Pyrroles/pharmacology
;
RNA, Messenger/analysis/metabolism
;
Rats
;
Research Support, Non-U.S. Gov't
;
Sulfonamides/pharmacology
;
Tumor Necrosis Factor-alpha/genetics