1.GSK3 Inhibition Reduces Inflammatory Responses of Microglia and Upregulates Il-10 Production
Zuhaida Md Zain ; Sharmili Vidyadaran ; Masriana Hassan
Malaysian Journal of Medicine and Health Sciences 2017;13(1):1-8
Introduction: Neurodegeneration resulting from pathogen invasion or tissue damage has been associated with
activation of microglia, and exacerbated by the release of neurotoxic mediators such as pro-inflammatory cytokines,
chemokines and reactive oxygen species. Activation of microglia stimulated by lipopolysaccharide is mediated in
part by GSK-3 signaling molecule. Induced IL-10 expression via GSK-3 inhibition is noteworthy since IL-10 has been
remarkably shown to suppress inflammation. Objectives: We aimed to inactivate microglia through inhibition of
GSK-3 signaling and to determine its effects on the production of pro- and anti-inflammatory mediators. Methods:
LPS-stimulated BV-2 cells were treated with a GSK-3 inhibitor (LiCl, NP12, SB216763 or CHIR99021). Inhibition
of GSK-3 was determined by the phosphorylation status of GSK-3β. The effects of GSK-3 inhibition on microglial
inflammatory response were investigated by examining various mediators and CD200R marker. Production of nitric
oxide (NO), glutamate and pro- and anti-inflammatory cytokines were measured using flow cytometry, Griess assay,
glutamate assay and Cytometric Bead Array (CBA) respectively. Results: GSK-3β signaling in LPS-stimulated microglia
was blocked by GSK-3 inhibitor through increased phosphorylation at Serine 9 residue. GSK-3 inhibitors had also
led to reducing in microglia activity via increased expression of CD200R. Inhibition of GSK-3 also diminished
inflammatory mediators such as nitric oxide (NO), glutamate, pro-inflammatory cytokines (TNF-α and IL-6) and
chemokine, MCP-1. Reduction of pro-inflammatory mediators by GSK-3 inhibitor was coincided with increased
IL-10 production. Conclusions: Suppression of microglia-mediated inflammatory response was facilitated by GSK-3
inhibition with associated increased in IL-10 production.
Microglia
2.A Randomised Approach for Enumerating Migrated Cells in a Transwell Migration Assay
Malaysian Journal of Medicine and Health Sciences 2018;14(SP3):50-53
The transwell migration assay is commonly used for assessing cell migration. It involves the enumeration of cells that have migrated across a pore-containing membrane. We describe a randomised approach to quantifying migrated cells and compare it to a conventional full cell count. We used ATP as a chemoattractant and automatic cell quantification performed on all fields (Full count; FC) or 10 randomly selected fields (Randomised count; RC). The two methods were compared by evaluating standard deviations (SD), coefficient of variation (CV) and using the Bland-Altman analysis. The dispersion of data is higher with the RC approach (3.77-6.66% CV for control; 3.89-4.48% CV for ATP-treated wells) compared to FC (0.27-0.46% CV for control; 0.05-0.09% CV for ATP-treated wells), but are acceptable considering that the number of migrated cells are in the thousands. Both methods verified that an ATP migration assay for BV2 microglia was established, demonstrating that the RC approach is reliable and comparable to a full count.
Microglia
3.Microglial Phagocytosis in the Neurodegenerative Diseases.
Sheng-nan CAO ; Xiu-qi BAO ; Hua SUN ; Dan ZHANG
Acta Academiae Medicinae Sinicae 2016;38(2):228-233
Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases.
Humans
;
Microglia
;
cytology
;
Neurodegenerative Diseases
;
physiopathology
;
Phagocytosis
5.Specialized Microglia Resolve Neuropathic Pain in the Spinal Cord.
Jing YANG ; Shulan XIE ; Shengmei ZHU ; Zhen-Zhong XU
Neuroscience Bulletin 2023;39(1):173-175
Humans
;
Microglia
;
Spinal Cord
;
Neuralgia
;
Hyperalgesia
8.Microglia in the normally aged hippocampus.
Laboratory Animal Research 2011;27(3):181-187
The hippocampus plays important roles in the regulation and combination of short and long term memory and spatial navigation with other brain centers. Aging is accompanied by a functional decline of the hippocampus and degenerative disease. Microglia are major immune cells in the central nervous system and response to degenerative changes in the aged brain. In this respect, functional and morphological changes of the hippocampus have been closely related to microglial changes during normal aging with or without disease. Therefore, in this review, we discuss morphological and functional changes of the hippocampus and microglia in the aging brain.
Aged
;
Aging
;
Brain
;
Central Nervous System
;
Hippocampus
;
Humans
;
Memory
;
Microglia
9.Physiological properties and functions of microglia.
Ying LI ; Xu-Fei DU ; Jiu-Lin DU
Acta Physiologica Sinica 2013;65(5):471-482
Microglia, the resident immune effective cells of the central nervous system, play crucial roles in mediating immune-related process. It becomes activated quickly in response to even minor pathological insults and participates in series of immune responses. Under physiological conditions, most microglia stay in a typical resting state, with ramified processes continuously extending and retracting from surrounding neural tissues, suggesting an important function of resting microglia. Recent studies indicate that resting microglia can regulate many physiological processes, including neural development, neural circuit formation, neuronal activity and plasticity, and animal grooming behavior. Here, we review the properties of resting microglia and further discuss how microglia participate in the above-mentioned functional regulation under physiological conditions.
Animals
;
Central Nervous System
;
cytology
;
Humans
;
Microglia
;
immunology
;
physiology