1.Technology development and instrumentation of a high-throughput and automated microbial microdroplet culture system for microbial evolution and screening.
Xiaojie GUO ; Liyan WANG ; Chong ZHANG ; Xin-Hui XING
Chinese Journal of Biotechnology 2021;37(3):991-1003
Since microdroplets are able to be generated rapidly in large amount and each droplet can be well controlled as an independent micro-cultivator, droplet microfluidic technology can be potentially used in the culture of microorganisms, and provide the microbial culture with high throughput manner. But its application mostly stays in the laboratory-level building and using for scientific research, and the wide use of droplet microfluidics in microbial technology has been limited by the key problems that the operation for microdroplets needs high technical requirements with wide affecting factors and the difficulties in integration of automatic microdroplet instrumentation. In this study, by realizing and integrating the complicated operations of droplet generation, cultivation, detection, splitting, fusion and sorting, we design a miniaturized, fully automated and high-throughput microbial microdroplet culture system (MMC). The MMC can be widely used in microbial growth curve test, laboratory adaptive evolution, single factor and multi-level analysis of microbial culture, metabolite detection and so on, and provide a powerful instrument platform for customized microbial evolution and screening aiming at efficient strain engineering.
Industrial Development
;
Microfluidics
2.Paper-Based Analytical Device for Quantitative Urinalysis.
Seong Geun JEONG ; Jongmin KIM ; Jin Oh NAM ; Young Shin SONG ; Chang Soo LEE
International Neurourology Journal 2013;17(4):155-161
Paper-based analytical devices are fluidic chips fabricated with extremely inexpensive materials, namely paper, thereby allowing their use as a zero-cost analytical device in third-world countries that lack access to expensive diagnostic infrastructures. The aim of this review is to discuss: (1) microfluidic paper-based analytical devices (microPADs) for quantitative analysis, (2) fabrication of two- or three-dimensional microPADs, (3) analytical methods of microPADs, and (4) our opinions regarding the future applications of microPADs for quantitative urinalysis.
Developing Countries
;
Methods
;
Microfluidics
;
Urinalysis*
3.Tactic movement of microalgae and its application in targeted transport: a review.
Yuanyuan LIU ; Weiyang ZENG ; Ru CHEN ; Yunlong GE ; Lihan ZI ; Jun YANG ; Fantao KONG
Chinese Journal of Biotechnology 2022;38(2):578-591
Microalgae are a group of photosynthetic microorganisms, which have the general characteristics of plants such as photosynthesis, and some species have the ability of movement which resembles animals. Recently, it was reported that microalgae cells can be engineered to precisely deliver medicine-particles and other goods in microfluidic chips. These studies showed great application potential in biomedical treatment and pharmacodynamic analysis, which have become one of the current research hotspots. However, these developments have been rarely reviewed. Here, we summarized the advances in manageable movement exemplified by a model microalgae Chlamydomonas reinhardtii based on its characteristics of chemotaxis, phototaxis, and magnetotaxis. The bottlenecks and prospects in the application of microalgae-based tactic movement were also discussed. This review might be useful for rational design and modification of microalgal manageable movement to achieve targeted transport in medical and other fields.
Chlamydomonas reinhardtii
;
Microalgae
;
Microfluidics
;
Photosynthesis
4.Extraction of exosome by gel electrophoresis microfluidic chip and determination of miRNA-21 in exosome of human plasma.
Dan LUO ; Fengying RAN ; Lun WU ; Juan ZHANG ; Fangling REN ; Jingjian LIU ; Binqiang ZHANG ; Qinhua CHEN
Chinese Journal of Biotechnology 2021;37(2):663-672
We developed a high-efficiency microfluidic chip for extracting exosomes from human plasma. We collected peripheral blood from normal human, designed and fabricated a microfluidic chip based on nanoporous membrane and agarose gel electrophoresis to isolate exosomes. The extracted exosomes were characterized by transmission electron microscopy, nanosight and Western blotting, the morphology, concentration and particle size of exosomes were identified and analyzed. Meanwhile, we used ultracentrifugation and microfluidic chip to isolate exosomes separately. The particle size and concentration of the exosomes extracted by two methods were compared and analyzed, and their respective extraction efficiency was discussed. Finally, the expression level of miRNA-21 in exosomes was analyzed by RT-PCR. The microfluidic chip isolated (in 1 hour) high-purity exosomes with size ranging from 30-200 nm directly from human plasma, allowing downstream exosomal miRNA analysis. By comparing with ultracentrifugation, the isolation yield of microfluidic chip was 3.80 times higher than ultracentrifugation when the volume of plasma sample less than 100 μL. The optimized parameters for exosome isolation by gel electrophoresis microfluidic chip were: voltage: 100 V; concentration of agarose gel: 1.0%; flow rate of injection pump: 0.1 mL/h. The gel electrophoresis microfluidic chips could rapidly and efficiently isolate the exosomes, showing great potential in the research of exosomes and cancer biomarkers.
Exosomes
;
Humans
;
MicroRNAs/genetics*
;
Microfluidics
;
Plasma
;
Ultracentrifugation
5.Research Progress of Application of Microfluidics Techniques in Cryopreservation.
Nanfeng ZHOU ; Yun YANG ; Xinli ZHOU
Journal of Biomedical Engineering 2015;32(3):702-706
Microfluidics technology may be an effective method to solve some problems in cryopreservation. This review presents the research progress of microfluidics technology in the field of cell membrane transport properties, cryoprotectant addition and washout and the vitrification for cryopreservation of biological materials. Existing problems of microfluidics technology in the application of cryopreservation are summarized and future research directions are indicated as well.
Cell Membrane
;
Cryopreservation
;
Cryoprotective Agents
;
Membrane Transport Proteins
;
Microfluidics
6.Research progress in microfluidic immunoassay chip.
Journal of Biomedical Engineering 2007;24(4):928-931
In recent 10 years, microfluidic technology has developed rapidly. Hence the speed of analysis can be upgraded, the performance be improved and the consumption of sample and reagent be reduced. In this review, we introduce the design, fabrication and application of microfluidic immunoassay chip.
Humans
;
Immunoassay
;
methods
;
Microfluidic Analytical Techniques
;
trends
;
Microfluidics
;
trends
7.Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system.
Huiling YUAN ; Libing DONG ; Ran TU ; Wenbin DU ; Shiru JI ; Qinhong WANG
Chinese Journal of Biotechnology 2014;30(1):139-146
Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.
Amino Acids
;
isolation & purification
;
Microfluidic Analytical Techniques
;
Microfluidics
;
instrumentation
8.Advances of using microfluidic chips for research and diagnosis of pulmonary inflammatory diseases.
Taoran XIA ; Wei ZOU ; Jing LIU
Chinese Journal of Biotechnology 2021;37(11):3905-3914
Microfluidic chip technology integrates the sample preparation, reaction, separation and detection on a chip. It consists a network of microchannels, which controls the whole system through fluid. With the advantages of portability, high throughput, and the ability to simulate the microenvironment in vivo, it has a broad application prospect in the research of disease diagnosis, pathogenesis and drug screening. Pulmonary inflammatory disease is a common disease usually caused by bacterial, viral and fungal infections. Early pneumonia is often difficult to diagnose due to lack of obvious respiratory symptoms or the symptoms are mostly atypical, but the disease progresses rapidly. Recently, microfluidic chip technology has been increasingly used to the study of pulmonary inflammatory diseases. In particular, it has been used to develop a "lung-on-a-chip" model, which can reproduce the key structure, function and mechanical properties of human alveolar capillary interface (i.e., the basic functional unit of a living lung), and well simulate the alveoli in vitro. Compared with the cell and animal models, this multifunctional micro experimental platform has great advantages. This article summarizes the advances of using microfluidic chips for the research and diagnosis of pulmonary inflammatory diseases, with the aim to provide new ideas for researchers in this area.
Animals
;
Drug Evaluation, Preclinical
;
Humans
;
Lung
;
Microfluidic Analytical Techniques
;
Microfluidics
9.High throughput detection and characterization of red blood cells deformability by combining optical tweezers with microfluidic technique.
Meng ZHANG ; Xiaochen MENG ; Lianqing ZHU
Journal of Biomedical Engineering 2020;37(5):848-854
A high throughput measurement method of human red blood cells (RBCs) deformability combined with optical tweezers technology and the microfluidic chip was proposed to accurately characterize the deformability of RBCs statistically. Firstly, the effective stretching deformation of RBCs was realized by the interaction of photo-trapping force and fluid viscous resistance. Secondly, the characteristic parameters before and after the deformation of the single cell were extracted through the image processing method to obtain the deformation index of area and circumference. Finally, statistical analysis was performed, and the average deformation index parameters (
Erythrocyte Deformability
;
Erythrocytes
;
Humans
;
Microfluidics
;
Optical Tweezers
;
Viscosity
10.Rapid generation of double-layer emulsion droplets based on microfluidic chip.
Likuan BAI ; Huiling YUAN ; Ran TU ; Qinhong WANG ; Erbing HUA
Chinese Journal of Biotechnology 2020;36(7):1405-1413
In vitro compartmentalization (IVC) links genotype and phenotype by compartmentalizing individual genes (including expression system) or cells into a micro-droplet reaction region. Combined with fluorescence-activated cell sorting (FACS), it can detect and separate single droplets in ultra-high throughput. IVC-FACS screening method has been widely used in protein engineering, enzyme directed evolution, etc. However, it is difficult to control the homogeneity of droplet size by mechanical dispersion method in previous studies, which seriously affects the quantitative detection of droplets and reduces the efficiency and accuracy of this screening method. With the rapid development of microfluidic chip manufacturing technology, the microfluidic chip-based methods for droplet generation are becoming more efficient and controllable. In this study, firstly, the water-in-oil (W/O) single-layer droplet generation chip was used to prepare single-layer monodisperse W1/O droplets at a high generation frequency, and then the W1/O droplets were reinjected into water-in-oil-in-water (W/O/W) double-layer droplet generation chip to prepare uniform W1/O/W2 double-layer emulsion droplets. By optimizing the flow rate and ratio of the oil and water phases, a single-layer micro-droplet can be generated with a diameter range from 15.4 to 23.2 μm and remain stable for several days under normal incubation. Then the single-layer droplets were reinjected into the double emulsion generation chip. By adjusting the flow rate of drop phase, oil phase and water phase, the double-layer emulsion droplets with a diameter range from 30 to 100 μm at a rate of 1 000 droplets/s could be obtained. Escherichia coli embedded in the double-layer emulsion droplets could be cultured and induced for protein expression. This study lays a foundation for the establishment of a high-throughput screening method based on the droplet and flow cytometry.
Emulsions
;
Flow Cytometry
;
High-Throughput Screening Assays
;
Microfluidics
;
methods