1.Molecular imaging of membrane proteins and microfilaments using atomic force microscopy.
Se Hui JUNG ; Donghyun PARK ; Jae Hyo PARK ; Young Myeong KIM ; Kwon Soo HA
Experimental & Molecular Medicine 2010;42(9):597-605
Atomic force microscopy (AFM) is an emerging technique for a variety of uses involving the analysis of cells. AFM is widely applied to obtain information about both cellular structural and subcellular events. In particular, a variety of investigations into membrane proteins and microfilaments were performed with AFM. Here, we introduce applications of AFM to molecular imaging of membrane proteins, and various approaches for observation and identification of intracellular microfilaments at the molecular level. These approaches can contribute to many applications of AFM in cell imaging.
Cell Membrane/ultrastructure
;
Membrane Proteins/*physiology
;
Microfilaments/*physiology
;
*Microscopy, Atomic Force
;
Molecular Imaging/*methods
2.beta PAK-interacting exchange factor may regulate actin cytoskeleton through interaction with actin.
Chan Soo LEE ; Kyung Yong KIM ; Jae Bin IM ; Jae Woon CHOI ; Hyong Kyu KIM ; Jeong Soo PARK ; Eun Young SHIN ; Seung Ryul KIM ; Eung Gook KIM
Experimental & Molecular Medicine 2004;36(6):582-587
p21-activated kinase (PAK)-interacting exchange factor (PIX) is known to be involved in regulation of Cdc42/Rac GTPases and PAK activity. PIX binds to the proline-rich region of PAK, and regulates biological events through activation of Cdc42/Rac GTPase. To further investigate the role of PIX we produced monoclonal antibodies (Mab) against beta PAK. Three clones; N-C6 against N-terminal half and C-A3 and C-B7 against C- terminal half of beta PAK were generated and characterized. N-C6 Mab detected beta PAK as a major band in most cell lines. C-A3 Mab recognizes GIT-binding domain (GBD), but it does not interfere with GIT binding to beta PAK. Using C-A3 Mab possible beta PAK interaction with actin in PC12 cells was examined. beta PAK Mab (C-A3) specifically precipitated actin of the PC12 cell lysates whereas actin Mab failed to immunoprecpitate beta PAK. Co-sedimentation of PC12 cell lysates with the polymerized F-actin resulted in the recovery of most of beta PAK in the cell lysates. These results suggest that beta PAK may not interact with soluble actin but with polymerized F-actin and revealed that beta PAK constitutes a functional complex with actin. These data indicate real usefulness of the beta PAK Mab in the study of beta PAK role(s) in regulation of actin cyoskeleton.
Actins/*metabolism
;
Animals
;
Antibodies, Monoclonal/immunology
;
Cell Cycle Proteins/immunology/metabolism/*physiology
;
Cell Line, Tumor
;
Cytoskeletal Proteins/metabolism
;
Epitope Mapping
;
Guanine Nucleotide Exchange Factors/immunology/metabolism/*physiology
;
Immunoprecipitation
;
Mice
;
Microfilaments/*physiology
;
Protein Structure, Tertiary
;
Rats
;
Research Support, Non-U.S. Gov't
3.The role of Rho GTPases in the regulation of the rearrangement of actin cytoskeleton and cell movement.
Rokeya BEGUM ; M S A NUR-E-KAMAL ; M A ZAMAN
Experimental & Molecular Medicine 2004;36(4):358-366
The rearrangement of the actin cytoskeleton has been shown to play a critical role in the development of transformation and malignant phenotype of cancer cells. Rho family GTPases regulate the arrangement of the actin cytoskeleton. By wound-healing assay, we have found that NIH 3T3 fibroblast cells move towards the wound- gaps by extending filopodial and lamellipdial structures at the leading edge of the moving cells. We have inactivated the function of Rho GTPases of v-Ras transformed NIH 3T3 cells by overexpressing Rho GTPase-activating (RhoGAP) domain of RhoGAP of p190. We have observed that inactivation of Rho, Rac and Cdc42 GTPases by overexpressing RHG causes inhibition of: (i) polymerization of actin to form filaments, (ii) formation of lamellipodia, filopodia and stress fibres, (iii) cell motility, (iv) cell spreading and (v) cell-to-cell adhesions. These results further strengthen the current knowledge on the role of Rho, Rac and Cdc42 GTPases in the regulation of the rearrangement of actin cytoskeleton. Our results, for the first time, demonstrate that RhoGAP domain of RhoGAP could be used to study the molecular mechanism of Ras-mediated signalling in growth, differentiation and carcinogenesis.
Animals
;
Biological Assay
;
Cell Line, Transformed
;
Cell Movement/*physiology
;
Cell Transformation, Neoplastic/*ultrastructure
;
Mice
;
Microfilaments/metabolism/*ultrastructure
;
NIH 3T3 Cells
;
Research Support, Non-U.S. Gov't
;
Wound Healing
;
rho GTP-Binding Proteins/genetics/*physiology
4.Effects of Sinusoidal Electromagnetic Field on Structure and Function of Different Kinds of Cell Lines.
Ah Ram SUL ; Si Nae PARK ; Hwal SUH
Yonsei Medical Journal 2006;47(6):852-861
This study investigated that whether a 2 mT, 60 Hz, sinusoidal electromagnetic field (EMF) alters the structure and function of cells. This research compared the effects of EMF on four kinds of cell lines: hFOB 1.19 (fetal osteoblast), T/G HA-VSMC (aortic vascular smooth muscle cell), RPMI 7666 (B lymphoblast), and HCN-2 (cortical neuronal cell). Over 14 days, cells were exposed to EMF for 1, 3, or 6 hours per day (hrs/d). The results pointed to a cell type-specific reaction to EMF exposure. In addition, the cellular responses were dependent on duration of EMF exposure. In the present study, cell proliferation was the trait most sensitive to EMF. EMF treatment promoted growth of hFOB 1.19 and HCN-2 compared with control cells at 7 and 14 days of incubation. When the exposure time was 3 hrs/d, EMF enhanced the proliferation of RPMI 7666 but inhibited that of T/G HA- VSMC. On the other hand, the effects of EMF on cell cycle distribution, cell differentiation, and actin distribution were unclear. Furthermore, we hardly found any correlation between EMF exposure and gap junctional intercellular communication in hFOB 1.19. This study revealed that EMF might serve as a potential tool for manipulating cell proliferation.
Signal Transduction
;
Microfilaments/radiation effects
;
Humans
;
Gap Junctions/metabolism/radiation effects
;
*Electromagnetic Fields
;
Cell Proliferation/radiation effects
;
Cell Physiology/*radiation effects
;
Cell Line
;
Cell Differentiation/radiation effects
;
Cell Cycle/radiation effects
5.Effects of Sinusoidal Electromagnetic Field on Structure and Function of Different Kinds of Cell Lines.
Ah Ram SUL ; Si Nae PARK ; Hwal SUH
Yonsei Medical Journal 2006;47(6):852-861
This study investigated that whether a 2 mT, 60 Hz, sinusoidal electromagnetic field (EMF) alters the structure and function of cells. This research compared the effects of EMF on four kinds of cell lines: hFOB 1.19 (fetal osteoblast), T/G HA-VSMC (aortic vascular smooth muscle cell), RPMI 7666 (B lymphoblast), and HCN-2 (cortical neuronal cell). Over 14 days, cells were exposed to EMF for 1, 3, or 6 hours per day (hrs/d). The results pointed to a cell type-specific reaction to EMF exposure. In addition, the cellular responses were dependent on duration of EMF exposure. In the present study, cell proliferation was the trait most sensitive to EMF. EMF treatment promoted growth of hFOB 1.19 and HCN-2 compared with control cells at 7 and 14 days of incubation. When the exposure time was 3 hrs/d, EMF enhanced the proliferation of RPMI 7666 but inhibited that of T/G HA- VSMC. On the other hand, the effects of EMF on cell cycle distribution, cell differentiation, and actin distribution were unclear. Furthermore, we hardly found any correlation between EMF exposure and gap junctional intercellular communication in hFOB 1.19. This study revealed that EMF might serve as a potential tool for manipulating cell proliferation.
Signal Transduction
;
Microfilaments/radiation effects
;
Humans
;
Gap Junctions/metabolism/radiation effects
;
*Electromagnetic Fields
;
Cell Proliferation/radiation effects
;
Cell Physiology/*radiation effects
;
Cell Line
;
Cell Differentiation/radiation effects
;
Cell Cycle/radiation effects