1.Chemical Components from the Stems of Pueraria lobata and Their Tyrosinase Inhibitory Activity.
Abubaker M A MORGAN ; Mi Ni JEON ; Min Hye JEONG ; Seo Young YANG ; Young Ho KIM
Natural Product Sciences 2016;22(2):111-116
Phytochemical investigation of the stems of Pueraria lobata (Wild) Ohwi (Leguminosae), led to the isolation of eighteen known compounds: β-amyrone (1), (+)-pinoresinol (2), (+)-syringaresinol (3) (+)-syringaresinol-O-β-D-glucoside (4), (+)-lariciresinol (5), (-)-tuberosin (6), naringenin (7), liquiritigenin (8), isoliquiritigenin (9) genistein (10), daidzein (11) daidzin (12) daidzein 4',7-diglucoside (13) 2,4,4'-trihydroxy deoxybenzoin (14), S-(+)-1-hydroxy-3-(4-hydroxyphenyl)-1-(4-hydroxy-2-methoxy-phenyl)propan-2-one (15), methyl 2-O-β-D-glucopyranosylbenzoate (16), pyromeconic acid 3-O-β-D-glucopyranoside 6'-(O-4''-hydroxy-3-methoxybenzoate) (17), and allantion (18). The chemical structures of these compounds were elucidated from spectroscopic data and by comparison of those data with previously published results. The effects of isolated compounds on mushroom tyrosinase enzymatic activity were screened. The results indicated that, chloroform extract of P. lobata stems turned out to be having tyrosinase inhibitory effect, and only compounds 5, 8, 9, and 11 showed enzyme inhibitory activity, with IC₅₀ values of 21.49 ± 4.44, 25.24 ± 6.79, 4.85 ± 2.29, and 17.50 ± 1.29 µM, respectively, in comparison with these of positive control, kojic acid (IC₅₀ 12.28 ± 2.72 µM). The results suggest that P. lobata stems extract as well as its chemical components may represent as potential candidates for tyrosinase inhibitors.
Agaricales
;
Chloroform
;
Fabaceae
;
Genistein
;
Monophenol Monooxygenase*
;
Pueraria*
2.5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion.
Jae Hoon CHOI ; Jong Gil PARK ; Hyung Jun JEON ; Mi Sun KIM ; Mi Ran LEE ; Mi Ni LEE ; SeongKeun SONN ; Jae Hong KIM ; Mun Han LEE ; Myung Sook CHOI ; Yong Bok PARK ; Oh Seung KWON ; Tae Sook JEONG ; Woo Song LEE ; Hyun Bo SHIM ; Dong Hae SHIN ; Goo Taeg OH
Experimental & Molecular Medicine 2011;43(8):471-478
A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy-2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-alpha) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-alpha , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis.
Animals
;
Atherosclerosis/*drug therapy
;
Cell Adhesion/drug effects
;
Cell Line
;
Cell Movement/drug effects
;
Chemokine CCL2/metabolism
;
Dinoprostone/metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Leukotriene B4/metabolism
;
Macrophages/cytology/drug effects
;
Male
;
Mice
;
Monocytes/cytology/*drug effects
;
Random Allocation
;
Receptors, LDL/deficiency/genetics
;
Thiazolidinediones/*therapeutic use
;
Tumor Necrosis Factor-alpha/pharmacology
3.Colon cancer: the 2023 Korean clinical practice guidelines for diagnosis and treatment
Hyo Seon RYU ; Hyun Jung KIM ; Woong Bae JI ; Byung Chang KIM ; Ji Hun KIM ; Sung Kyung MOON ; Sung Il KANG ; Han Deok KWAK ; Eun Sun KIM ; Chang Hyun KIM ; Tae Hyung KIM ; Gyoung Tae NOH ; Byung-Soo PARK ; Hyeung-Min PARK ; Jeong Mo BAE ; Jung Hoon BAE ; Ni Eun SEO ; Chang Hoon SONG ; Mi Sun AHN ; Jae Seon EO ; Young Chul YOON ; Joon-Kee YOON ; Kyung Ha LEE ; Kyung Hee LEE ; Kil-Yong LEE ; Myung Su LEE ; Sung Hak LEE ; Jong Min LEE ; Ji Eun LEE ; Han Hee LEE ; Myong Hoon IHN ; Je-Ho JANG ; Sun Kyung JEON ; Kum Ju CHAE ; Jin-Ho CHOI ; Dae Hee PYO ; Gi Won HA ; Kyung Su HAN ; Young Ki HONG ; Chang Won HONG ; Jung-Myun KWAK ;
Annals of Coloproctology 2024;40(2):89-113
Colorectal cancer is the third most common cancer in Korea and the third leading cause of death from cancer. Treatment outcomes for colon cancer are steadily improving due to national health screening programs with advances in diagnostic methods, surgical techniques, and therapeutic agents.. The Korea Colon Cancer Multidisciplinary (KCCM) Committee intends to provide professionals who treat colon cancer with the most up-to-date, evidence-based practice guidelines to improve outcomes and help them make decisions that reflect their patients’ values and preferences. These guidelines have been established by consensus reached by the KCCM Guideline Committee based on a systematic literature review and evidence synthesis and by considering the national health insurance system in real clinical practice settings. Each recommendation is presented with a recommendation strength and level of evidence based on the consensus of the committee.