1.Connective tissue disease is associated with the risk of posterior reversible encephalopathy syndrome following lung transplantation in Korea
Tae Jung KIM ; Hyun Joo LEE ; Samina PARK ; Sang-Bae KO ; Soo-Hyun PARK ; Seung Hwan YOON ; Kwon Joong NA ; In Kyu PARK ; Chang Hyun KANG ; Young Tae KIM ; Sun Mi CHOI ; Jimyung PARK ; Joong-Yub KIM ; Hong Yeul LEE
Acute and Critical Care 2025;40(1):79-86
Background:
Posterior reversible encephalopathy syndrome (PRES) is a rare complication of lung transplantation with poorly understood risk factors and clinical characteristics. This study aimed to examine the occurrence, risk factors, and clinical data of patients who developed PRES following lung transplantation.
Methods:
A retrospective analysis was conducted on 147 patients who underwent lung transplantation between February 2013 and December 2023. The patients were diagnosed with PRES based on the clinical symptoms and radiological findings. We compared the baseline characteristics and clinical information, including primary lung diseases and immunosuppressive therapy related to lung transplantation operations, between the PRES and non-PRES groups.
Results:
PRES manifested in 7.5% (n=11) of the patients who underwent lung transplantation, with a median onset of 15 days after operation. Seizures were identified as the predominant clinical manifestation (81.8%, n=9) in the group diagnosed with PRES. All patients diagnosed with PRES recovered fully. Patients with PRES were significantly associated with connective tissue disease-associated interstitial lung disease (45.5% vs. 18.4%, P=0.019, odds ratio=9.808; 95% CI, 1.064–90.386; P=0.044). Nonetheless, no significant variance was observed in the type of immunotherapy, such as the use of calcineurin inhibitors, blood pressure, or acute renal failure subsequent to lung transplantation.
Conclusions
PRES typically manifests shortly after lung transplantation, with seizures being the predominant initial symptom. The presence of preexisting connective tissue disease as the primary lung disease represents a significant risk factor for PRES following lung transplantation.
2.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
3.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
4.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
5.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
6.Mutation-Driven Immune Microenvironments in Non-Small Cell Lung Cancer: Unrevealing Patterns through Cluster Analysis
Youngtaek KIM ; Joon Yeon HWANG ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(12):683-694
Purpose:
We aimed to comprehensively analyze the immune cell and stromal components of tumor microenvironment at the single-cell level and identify tumor heterogeneity among the major top-derived oncogene mutations in non-small cell lung cancer (NSCLC) using single-cell RNA sequencing (scRNA-seq) data.
Materials and Methods:
The scRNA-seq dataset utilized in this study comprised 64369 primary tumor tissue cells from 21 NSCLC patients, focusing on mutations in EGFR, ALK, BRAF, KRAS, TP53, and the wild-type.
Results:
Tumor immune microenvironment (TIM) analysis revealed differential immune responses across NSCLC mutation subtypes. TIM analysis revealed different immune responses across the mutation subtypes. Two mutation clusters emerged: KRAS, TP53, and EGFR+TP53 mutations (MC1); and EGFR, BRAF, and ALK mutations (MC2). MC1 showed higher tertiary lymphoid structures signature scores and enriched populations of C2-T-IL7R, C3-T/NK-CXCL4, C9-T/NK-NKG, and C1-B-MS4A1 clusters than cluster 2. Conversely, MC2 cells exhibited higher expression levels of TNF, IL1B, and chemokines linked to alternative immune pathways. Remarkably, co-occurring EGFR and TP53 mutations were grouped as MC1. EGFR+TP53 mutations showed upregulation of peptide synthesis and higher synthetic processes, as well as differences in myeloid and T/NK cells compared to EGFR mutations. In T/NK cells, EGFR+TP53 mutations showed a higher expression of features related to cell activity and differentiation, whereas EGFR mutations showed the opposite.
Conclusion
Our research indicates a close association between mutation types and tumor microenvironment in NSCLC, offering insights into personalized approaches for cancer diagnosis and treatment.
7.Glucolipotoxicity Suppressed Autophagy and Insulin Contents in Human Islets, and Attenuation of PERK Activity Enhanced Them in an ATG7-Dependent Manner
Seoil MOON ; Ji Yoon LIM ; Mirang LEE ; Youngmin HAN ; Hongbeom KIM ; Wooil KWON ; Jin-Young JANG ; Mi Na KIM ; Kyong Soo PARK ; Hye Seung JUNG
Diabetes & Metabolism Journal 2024;48(2):231-241
Background:
Administration of pancreatic endoplasmic reticulum kinase inhibitor (PERKi) improved insulin secretion and hyperglycemia in obese diabetic mice. In this study, autophagic balance was studied whether to mediate it.
Methods:
Human islets were isolated from living patients without diabetes. PERKi GSK2606414 effects were evaluated in the islets under glucolipotoxicity by palmitate. Islet insulin contents and secretion were measured. Autophagic flux was assessed by microtubule associated protein 1 light chain 3 (LC3) conversion, a red fluorescent protein (RFP)-green fluorescent protein (GFP)- LC3 tandem assay, and P62 levels. For mechanical analyses, autophagy was suppressed using 3-methyladenine in mouse islets. Small interfering RNA for an autophagy-related gene autophagy related 7 (Atg7) was transfected to interfere autophagy.
Results:
PERKi administration to mice decreased diabetes-induced P62 levels in the islets. Glucolipotoxicity significantly increased PERK phosphorylation by 70% and decreased insulin contents by 50% in human islets, and addition of PERKi (40 to 80 nM) recovered both. PERKi also enhanced glucose-stimulated insulin secretion (6-fold). PERKi up-regulated LC3 conversion suppressed by glucolipotoxicity, and down-regulated P62 contents without changes in P62 transcription, indicating enhanced autophagic flux. Increased autophagosome-lysosome fusion by PERKi was visualized in mouse islets, where PERKi enhanced ATG7 bound to LC3. Suppression of Atg7 eliminated PERKi-induced insulin contents and secretion.
Conclusion
This study provided functional changes of human islets with regard to autophagy under glucolipotoxicity, and suggested modulation of autophagy as an anti-diabetic mechanism of PERKi.
8.Exploring the Expression and Function of T Cell Surface Markers Identified through Cellular Indexing of Transcriptomes and Epitopes by Sequencing
Joon Yeon HWANG ; Youngtaek KIM ; Kwangmin NA ; Dong Kwon KIM ; Seul LEE ; Seong-san KANG ; Sujeong BAEK ; Seung Min YANG ; Mi Hyun KIM ; Heekyung HAN ; Seong Su JEONG ; Chai Young LEE ; Yu Jin HAN ; Jie-Ohn SOHN ; Sang-Kyu YE ; Kyoung-Ho PYO
Yonsei Medical Journal 2024;65(9):544-555
Purpose:
By utilizing both protein and mRNA expression patterns, we can identify more detailed and diverse immune cells, providing insights into understanding the complex immune landscape in cancer ecosystems.
Materials and Methods:
This study was performed by obtaining publicly available Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data of peripheral blood mononuclear cells (PBMCs) from the Gene Expression Omnibus database. A total of 94674 total cells were analyzed, of which 32412 were T cells. There were 228 protein features and 16262 mRNA features in the data.The Seurat package was used for quality control and preprocessing, principal component analysis was performed, and Uniform Manifold Approximation and Projection was used to visualize the clusters. Protein and mRNA levels in the CITE-seq were analyzed.
Results:
We observed that a subset of T cells in the clusters generated at the protein level divided better. By identifying mRNA markers that were highly correlated with the CD4 and CD8 proteins and cross-validating CD26 and CD99 markers using flow cytometry, we found that CD4 + and CD8+ T cells were better discriminated in PBMCs. Weighted Nearest Neighbor clustering results identified a previously unobserved T cell subset.
Conclusion
In this study, we used CITE-seq data to confirm that protein expression patterns could be used to identify cells more precisely. These findings will improve our understanding of the heterogeneity of immune cells in the future and provide valuable insights into the complexity of the immune response in health and disease.
9.Assessing the Fear Factor of Coronavirus Disease 2019 (COVID-19) in Korea Using the COVID-19 Phobia Scale: A Cross-Sectional Study
Hocheol LEE ; Hye Ji KIM ; Dan Hee KWON ; Myung Bae PARK ; Sang Mi KIM ; Kyeong Na KIM ; Eun Woo NAM
Journal of Korean Medical Science 2023;38(7):e52-
Background:
A study on coronavirus disease 2019 (COVID-19) phobia among students revealed that fear of contracting COVID-19 was associated with commuting to school and spending time with others at school. Therefore, it is the need-of-the-hour for the Korean government to identify factors affecting COVID-19 phobia among university students and to consider these factors while framing the policy direction for the process of returning to normalcy in university education. Consequently, we aimed to identify the current state of COVID-19 phobia among Korean undergraduate and graduate students and the factors affecting COVID-19 phobia.
Methods:
This cross-sectional survey was conducted to identify the factors affecting COVID-19 phobia among Korean undergraduate and graduate students. The survey collected 460 responses from April 5 to April 16, 2022. The questionnaire was developed based on the COVID-19 Phobia Scale (C19P-S). Multiple linear regression was performed on the C19P-S scores using five models with the following dependent variables: Model 1, total C19P-S score; Model 2, psychological subscale score; Model 3, psychosomatic subscale score; Model 4, social subscale score; and Model 5, economic subscale score. The fit of these five models was established, and a P-value of less than 0.05 (F test) was considered statistically significant.
Results:
An analysis of the factors affecting the total C19P-S score led to the following findings: women significantly outscored men (difference: 4.826 points, P = 0.003); the group that favored the government’s COVID-19 mitigation policy scored significantly lower than those who did not favor it (difference: 3.161 points, P = 0.037); the group that avoided crowded places scored significantly higher than the group that did not avoid crowded places (difference: 7.200 points, P < 0.001); and those living with family/friends scored significantly higher than those in other living situations (difference: 4.606 points, P = 0.021). Those in favor of the COVID-19 mitigation policy had significantly lower psychological fear than those who were against it (difference: -1.686 points, P = 0.004). Psychological fear was also significantly higher for those who avoided crowded places compared to those who did not difference: 2.641 points, P < 0.001). Fear was significantly higher in people cohabitating than those living alone (difference: 1.543 points, P= 0.043).
Conclusion
The Korean government, in their pursuit of a policy that eases COVID-19-related restrictions, will also have to spare no efforts in providing correct information to prevent the escalation of COVID-19 phobia among people with a high fear of contracting the disease. This should be done through trustworthy information sources, such as the media, public agencies, and COVID-19 professionals.
10.Umbelliferone Ameliorates Hepatic Steatosis and Lipid-Induced ER Stress in High-Fat Diet-Induced Obese Mice
Na Won PARK ; Eun Soo LEE ; Kyung Bong HA ; Su Ho JO ; Hong Min KIM ; Mi-Hye KWON ; Choon Hee CHUNG
Yonsei Medical Journal 2023;64(4):243-250
Purpose:
Among the characteristics of non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is due to excessive fat accumulation and causes liver damage and lipotoxicity, which are associated with insulin resistance, endoplasmic reticulum (ER) stress, and apoptosis. Umbelliferone (UMB) has various powerful pharmacological properties, such as antioxidant, anti-hyperglycemic, anti-viral, and anti-inflammatory effects. However, the mechanism of action in hepatic steatosis and lipid-induced ER stress is still unclear. Thus, the efficacy of UMB in hepatic steatosis and palmitate (PA)-induced hepatocellular lipotoxicity was evaluated in the present study.
Materials and Methods:
Male C57BL/6J mice (n=40) were divided into four groups: regular diet (RD), UMB-supplemented RD, high-fat diet (HFD), and UMB-supplemented HFD. All mice were fed orally for 12 weeks. In addition, the effects of UMB on lipotoxicity were investigated in AML12 cells treated with PA (250 μM) for 24 h; Western blot analysis was used to evaluate the changes in ER stress and apoptotic-associated proteins.
Results:
Administration with UMB in HFD-fed mice reduced lipid accumulation and hepatic triglyceride (TG) as well as serum insulin and glucose levels. In AML12 cells, UMB treatment reduced lipid accumulation as indicated by decreases in the levels of lipogenesis markers, such as SREBP1, FAS, PPAR-γ, and ADRP. Furthermore, UMB reduced both oxidative stress and ER stress-related cellular apoptosis.
Conclusion
UMB supplementation ameliorated hepatic steatosis and improved insulin resistance by inhibiting lipid accumulation and regulating ER stress. These findings strongly suggest that UMB may be a potential therapeutic compound against NAFLD.

Result Analysis
Print
Save
E-mail