1.The Effect of Lovastatin(Mevacor(R)) in Patients with Hypercholesterolemia.
Su Young LEE ; Chun Suk KYOUNG ; Dong Chan KIM ; Kye Heui LEE ; Sang Joon CHOI ; In SON ; Seong Hoon PARK
Korean Circulation Journal 1991;21(2):328-336
Lovastatin is a potent inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, which catalyzes the conversion of hydroxymethylglutaryl-coenzyme A to mevalonate, anearly and rate-limiting step in the synthesis of cholesterol. We studied the therapeutic effect and safety of lovastatin in 18 patients with nonfamilial primary hypercholesterolemia. Patients received 20mg/day lovastatin therapy as a single evening dose. If the total cholesterol level exceeded 200mg/dl after 2weeks of lovastatin therapy, the dosage of lovastatin was doubled. Mean percent total cholesterol level reductions from baseline were 26.4% and 31.9% after 4, and 8 weeks of lovastatin therapy respectively. Mean percent HDL-cholesterol level increase from baseline were 12% and 13% after 4, and 8 weeks of lovastatin therapy respectively. Adverse effects attributable to lovastatin were mild and temporary and no patient was withdrawn from therapy. We concluded that lovastatin was a well tolerated and effective agent for the treatment of nonfamilial primary hypercholesterolemia. Further studies are needed to establish the long-term safety and effectiveness of this drug.
Cholesterol
;
Coenzyme A
;
Humans
;
Hypercholesterolemia*
;
Lovastatin
;
Mevalonic Acid
;
Oxidoreductases
2.Integrating balanced mevalonate pathway into chromosome for improving lycopene production in Escherichia coli.
Zhenxia LI ; Qianqian CHEN ; Jinlei TANG ; Qingyan LI ; Xueli ZHANG
Chinese Journal of Biotechnology 2019;35(3):404-414
Isoprenoids are all derived from two five-carbon building blocks called isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are synthesized either by the mevalonate (MVA) pathway or 2-C-methyld-D-erythritol-4-phosphate (MEP) pathway. In this study, the MVA pathway genes were integrated into the chromosome of LYC101, in which the expression of key genes in the MEP synthesis pathway and lycopene synthesis pathway were optimized by artificial regulatory parts, to further improve the production of isoprenoids in Escherichia coli. The plasmids pALV23 and pALV145 were screened from a plasmid library that constructed by using the RBS library to link the genes of the MVA pathway, which greatly increased the production of β-carotene. The effects of plasmids pALV23 and pALV145 on the lycopene production in low and high lycopene production strain, LYC001 and LYC101, were compared, respectively. The production of lycopene was increased by plasmids pALV23 and pALV145 in both strains. In high lycopene production strain LYC101, pALV23 produced more lycopene than pALV145. Then, the MVA gene together of promoter of pALV23 was integrated into the chromosome of LYC101 at poxB site using method of homologous recombination helped by CRISPR-Cas9 system, resulted in genetically stable strain, LYC102. The yield of lycopene of LYC102 was 40.9 mg/g DCW, 1.19-folds higher than that of LYC101, and 20% more than that of LYC101 with pALV23. Simultaneous expression of MVA pathway and MEP pathway in recombinant E. coli can effectively increase the yield of terpenoids. In this study, a plasmid-free, genetically stable, high-yielding lycopene strain was constructed, which could be used for industrialization. Also, the platform strain can be used for the synthesis of other terpenoids.
Chromosomes, Bacterial
;
Escherichia coli
;
Lycopene
;
Mevalonic Acid
;
beta Carotene
3.Comparison of transcriptome of Atractylodes lancea rhizome and exploration of genes for sesquiterpenoid biosynthesis.
Ye CAO ; Wen-Jin ZHANG ; Li-Kun CHANG ; Chuan-Zhi KANG ; Yue-Feng WANG ; Dong-Mei XIE ; Sheng WANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2022;47(18):4895-4907
This study compared the transcriptome of Atractylodes lancea rhizome at different development stages and explored genes encoding the key enzymes of the sesquiterpenoid biosynthesis pathway. Specifically, Illumina NovaSeq 6000 was employed for sequencing the cDNA libraries of A. lancea rhizome samples at the growth stage(SZ), flowering stage(KH), and harvesting stage(CS), respectively. Finally, a total of 388 201 748 clean reads were obtained, and 16 925, 8 616, and 13 702 differentially expressed genes(DEGs) were identified between SZ and KH, KH and CS, and SZ and CS, separately. Among them, 53 genes were involved in the sesquiterpenoid biosynthesis pathways: 9 encoding 6 enzymes of the mevalonic acid(MVA) pathway, 15 encoding 7 enzymes of the 2-C-methyl-D-erythritol-4-phosphate(MEP) pathway, and 29 of sesquiterpenoid and triterpenoid biosynthesis pathway. Weighted gene co-expression network analysis(WGCNA) yielded 12 genes related to sesquiterpenoid biosynthesis for the SZ, 1 gene for the KH, and 1 gene for CS, and several candidate genes for sesquiterpenoid biosynthesis were discovered based on the co-expression network. This study laid a solid foundation for further research on the sesquiterpenoid biosynthesis pathway, analysis of the regulation mechanism, and mechanism for the accumulation of sesquiterpenoids in A. lancea.
Atractylodes/genetics*
;
Mevalonic Acid/metabolism*
;
Rhizome/genetics*
;
Sesquiterpenes/metabolism*
;
Transcriptome
;
Triterpenes/metabolism*
4.Antiproliferative Effect of Lovastatin on Vascular Smooth Muscle Cell.
Seung Woo PARK ; Duk Kyung KIM ; Jeong Eun HUH ; Yoon Hyuk CHOI ; Yoon Ho CHOI ; Hyeon Cheol GWON ; June Soo KIM ; Sang Hoon LEE ; Kyung Pyo HONG ; Jeong Euy PARK ; Jung Don SEO ; Won Ro LEE
Korean Circulation Journal 1998;28(12):1981-1992
BACKGROUND AND OBJECTIVES: This study was performed to investigate the antiproliferative effect of lovastatin on vascular smooth muscle cell, especially to determine whether lovastatin induces apoptosis in vascular smooth muscle cell and the products of mevalonate pathway can reverse the antiproliferative effect of lovastatin. METHODS AND MATERIALS: Lovastatin only and lovastatin with one of the products of mevalonate pathway such as isopentenyl adenine, farnesol, mevalonate, cholesterol were added respectively in cultured rat vascular smooth muscle cells stimulated with 10% fetal calf serum. DNA synthesis was measured by tritiated-thymidine incorporation. Cell number was determined by hemocytometric counting. Cells were Giemsa-stained to evaluate morphological changes of apoptosis. Extracted DNA from the cells treated with lovastatin was assessed by gel electrophoresis. RESULTS: 1)Lovastatin inhibited DNA synthesis and cell proliferation in a dose-dependent manner. 2)The inhibitory effects of lovastatin could be reversed almost completely by mevalonate, partially by farnesol. 3)Lovastatin-treated vascular smooth muscle cells showed typical morphological changes of apoptosis. 4)A distinct ladder of DNA bands was visualized by gel electrophoresis of the DNA from the cells treated with lovastatin. CONCLUSION: Mevalonate metabolism is essential for vascular smooth muscle cell proliferation. The antiproliferative effect of lovastatin may result from the induction of apoptosis in vascular smooth muscle cells.
Adenine
;
Animals
;
Apoptosis
;
Cell Count
;
Cell Proliferation
;
Cholesterol
;
DNA
;
Electrophoresis
;
Farnesol
;
Lovastatin*
;
Metabolism
;
Mevalonic Acid
;
Muscle, Smooth, Vascular*
;
Rats
5.Effects of Bisphosphonates on Glucose Transport in a Conditionally Immortalized Rat Retinal Capillary Endothelial Cell Line (TR-iBRB Cells).
Na Young LEE ; Hyun Joo PARK ; Young Sook KANG
Biomolecules & Therapeutics 2016;24(1):94-98
The objective of the present study was to elucidate the effect of bisphosphonates, anti-osteoporosis agents, on glucose uptake in retinal capillary endothelial cells under normal and high glucose conditions. The change of glucose uptake by pre-treatment of bisphosphonates at the inner blood-retinal barrier (iBRB) was determined by measuring cellular uptake of [3H]3-O-methyl glucose (3-OMG) using a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB cells) under normal and high glucose conditions. [3H]3-OMG uptake was inhibited by simultaneous treatment of unlabeled D-glucose and 3-OMG as well as glucose transport inhibitor, cytochalasin B. On the other hand, simultaneous treatment of alendronate or pamidronate had no significant inhibitory effect on [3H]3-OMG uptake by TR-iBRB cells. Under high glucose condition of TR-iBRB cells, [3H]3-OMG uptake was increased at 48 h. However, [3H]3-OMG uptake was decreased significantly by pre-treatment of alendronate or pamidronate compared with the values for normal and high glucose conditions. Moreover, geranylgeraniol (GGOH), a mevalonate pathway intermediate, increased the uptake of [3H]3-OMG reduced by bisphosphonates pre-treatment. But, pre-treatment of histamine did not show significant inhibition of [3H]3-OMG uptake. The glucose uptake may be down regulated by inhibiting the mevalonate pathway with pre-treatment of bisphosphonates in TR-iBRB cells at high glucose condition.
Alendronate
;
Animals
;
Blood-Retinal Barrier
;
Capillaries*
;
Cytochalasin B
;
Diphosphonates*
;
Endothelial Cells*
;
Glucose*
;
Hand
;
Histamine
;
Mevalonic Acid
;
Rats*
;
Retinaldehyde*
6.Improving isoprene production by engineered heterologous mevalonate pathway in Escherichia coli.
Fan FENG ; Yang XU ; Yong TAO ; Weifeng LIU ; Baixue LIN
Chinese Journal of Biotechnology 2015;31(7):1073-1081
Isoprene is an important precursor of synthetic rubber material. In our previous study, metabolic engineered Escherichia coli strain (BW-01) was constructed and used to produce isoprene. Based on the theory of protein budget, using synthetic biology strategies including the increased copy number of genes and rare codons, we regulated the expression of key enzyme to improve isoprene production in Escherichia coli strain. Under shake-flask conditions, isoprene productivity of the engineered strain (BW-07) increased by 73% compared with BW-01, reached 761.1 mg/L. It provides a reference for further studies.
Butadienes
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Dosage
;
Hemiterpenes
;
biosynthesis
;
Industrial Microbiology
;
Metabolic Engineering
;
Mevalonic Acid
;
Pentanes
;
Synthetic Biology
7.Novel non-apoptotic cell death: ferroptosis.
Yeungnam University Journal of Medicine 2017;34(2):174-181
Ferroptosis is a newly recognized type of cell death that results from iron-dependent lipid peroxidation and is different from other types of cell death, such as apoptosis, necrosis, and autophagic cell death. This type of cell death is characterized by mitochondrial shrinkage with an increased mitochondrial membrane density and outer mitochondrial membrane rupture. Ferroptosis can be induced by a loss of activity of system Xc− and the inhibition of glutathione peroxidase 4, followed by the accumulation of lipid reactive oxygen species (ROS). In addition, inactivation of the mevalonate and transsulfuration pathways is involved in the induction of ferroptosis. Moreover, nicotinamide adenine dinucleotide phosphate oxidase and p53 promote ferroptosis by increasing ROS production, while heat shock protein beta-1 and nuclear factor erythroid 2-related factor 2 inhibit ferroptosis by reducing iron uptake. This article outlines the molecular mechanisms and signaling pathways of ferroptosis regulation, and explains the roles of ferroptosis in human disease.
Apoptosis
;
Autophagy
;
Cell Death*
;
Glutathione Peroxidase
;
HSP27 Heat-Shock Proteins
;
Humans
;
Iron
;
Lipid Peroxidation
;
Mevalonic Acid
;
Mitochondrial Membranes
;
NADP
;
Necrosis
;
Oxidoreductases
;
Reactive Oxygen Species
;
Rupture
8.Cloning and analysis of cDNA encoding key enzyme gene (dxr) of the non-MVA pathway in Taxus chinensis cells.
Qing-Ping ZHENG ; Long-Jiang YU ; Zhi LIU ; Mo-Yi LI ; Fu XIANG ; Qin YANG
Chinese Journal of Biotechnology 2004;20(4):548-553
Two distinct routes (classical mevalonate pathway and a novel mevalonate-independent pathway) are utilized by plants for the biosynthesis of isopentenyl diphosphate, the universal precursor of isoprenoids (Fig. 1). Present researches indicated that taxol was synthesized mainly via non-mevalonate pathway, but not genetic evidence was showed. The second step in non-mevalonate pathway involves an intramolecular rearrangement and subsequent reduction of deoxyxylulose phosphate to yield 2-C-methyl-D-erythritol-4-phosphate, and 1-Deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) with responsibility for this reaction was considered as a key enzyme. As a tool for the isolation of genes in terpenoid biosynthesis in plants, total RNA was prepared from Taxus chinensis suspension cells, a cell type highly specialized for diterpene (taxol). A reverse transcription-PCR strategy based on the design of degenerated oligonucleotides was developed for isolating the gene encoding a gymnosperm homolog of this enzyme from Taxus chinensis. Through sequence analysis by Blast P online, the resulting cDNA showed highly homologous to 1-deoxy-D-xylulose 5-phosphate reductoisomerases, with 95% identification compared with Arabidopsis thaliana (Q9XFS9), 94% with Mentha x piperita (Q9XESO), 80% with Synechococcus elongatus (Q8DK30), 78% with Synechocystis sp. PCC 6803 (Q55663) and Nostoc sp. PCC 7120 (Q8YP49), and 73% with Synechococcus leopoliensis (Q9RKT1). Deduced amino acid sequences were also analyzed by PROSITE, ClustalX (1.81) and Phylio (3.6 alpha), and data present evidence for the existence of this deoxyxyluose phosphate reductoisomerase in Taxus chinensis. This is the first report of the dxr gene cloned from gymnosperm.
Aldose-Ketose Isomerases
;
genetics
;
Cloning, Molecular
;
DNA, Complementary
;
chemistry
;
Mevalonic Acid
;
metabolism
;
Multienzyme Complexes
;
genetics
;
Oxidoreductases
;
genetics
;
Phylogeny
;
RNA
;
isolation & purification
;
Reverse Transcriptase Polymerase Chain Reaction
;
Taxus
;
genetics
9.Novel non-apoptotic cell death: ferroptosis
Yeungnam University Journal of Medicine 2017;34(2):174-181
Ferroptosis is a newly recognized type of cell death that results from iron-dependent lipid peroxidation and is different from other types of cell death, such as apoptosis, necrosis, and autophagic cell death. This type of cell death is characterized by mitochondrial shrinkage with an increased mitochondrial membrane density and outer mitochondrial membrane rupture. Ferroptosis can be induced by a loss of activity of system Xc− and the inhibition of glutathione peroxidase 4, followed by the accumulation of lipid reactive oxygen species (ROS). In addition, inactivation of the mevalonate and transsulfuration pathways is involved in the induction of ferroptosis. Moreover, nicotinamide adenine dinucleotide phosphate oxidase and p53 promote ferroptosis by increasing ROS production, while heat shock protein beta-1 and nuclear factor erythroid 2-related factor 2 inhibit ferroptosis by reducing iron uptake. This article outlines the molecular mechanisms and signaling pathways of ferroptosis regulation, and explains the roles of ferroptosis in human disease.
Apoptosis
;
Autophagy
;
Cell Death
;
Glutathione Peroxidase
;
HSP27 Heat-Shock Proteins
;
Humans
;
Iron
;
Lipid Peroxidation
;
Mevalonic Acid
;
Mitochondrial Membranes
;
NADP
;
Necrosis
;
Oxidoreductases
;
Reactive Oxygen Species
;
Rupture
10.Cloning and characterization of a cDNA coding 3-hydroxy-3-methylglutary CoA reductase involved in glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis.
Ying LIU ; Qiao-Xian XU ; Pei-Yu XI ; Hong-Hao CHEN ; Chun-Sheng LIU
Acta Pharmaceutica Sinica 2013;48(5):773-779
The roots of Glycyrrhiza uralensis are widely used in Chinese medicine for their action of clearing heat, detoxicating, relieving cough, dispelling sputum and tonifying spleen and stomach. The reason why Glycyrrhiza uralensis has potent and significant actions is that it contains various active secondary metabolites, especially glycyrrhizic acid. In the present study, we cloned the cDNA coding 3-hydroxy-3-methylglutary CoA reductase (HMGR) involved in glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis. The corresponding cDNA was expressed in Escherichia coli as fusion proteins. Recombinant HMGR exhibited catalysis activity in reduction of HMG-CoA to mevalonic acid (MVA) just as HMGR isolated from other species. Because HMGR gene is very important in the biosynthesis of glycyrrhizic acid in Glycyrrhiza uralensis, this work is significant for further studies concerned with strengthening the efficacy of Glycyrrhiza uralensis by means of increasing glycyrrhizic acid content and exploring the biosynthesis of glycyrrhizic acid in vitro.
Amino Acid Sequence
;
Cloning, Molecular
;
DNA, Complementary
;
genetics
;
Escherichia coli
;
genetics
;
metabolism
;
Glycyrrhiza uralensis
;
enzymology
;
genetics
;
Glycyrrhizic Acid
;
metabolism
;
Hydroxymethylglutaryl CoA Reductases
;
genetics
;
metabolism
;
Mevalonic Acid
;
metabolism
;
Phylogeny
;
Plant Roots
;
enzymology
;
Plants, Medicinal
;
enzymology
;
genetics
;
Recombinant Proteins
;
genetics
;
metabolism