1.Protein Methylation and Interaction with the Antiproliferative Gene, BTG2(/TIS21/Pc3).
Woon Ki PAIK ; Sangduk KIM ; In Kyoung LIM
Yonsei Medical Journal 2014;55(2):292-303
The last one and half a decade witnessed an outstanding re-emergence of attention and remarkable progress in the field of protein methylation. In the present article, we describe the early discoveries in research and review the role protein methylation played in the biological function of the antiproliferative gene, BTG2(/TIS21/PC3).
Methylation*
;
Protein Methyltransferases
2.Application of methyltransferases in microbial synthesis of natural products.
Xiangyan ZHANG ; Xiaolin SHEN ; Xinxiao SUN ; Jia WANG ; Qipeng YUAN
Chinese Journal of Biotechnology 2021;37(6):1869-1886
Methyltransferases (MTs) constitute a large group of enzymes that catalyze the transfer of a methyl moiety, most frequently from S-adenosyl-L-methionine, to their substrates. It plays an essential role in regulation of gene expression and synthesis of many natural compounds. Owing to its broad substrate spectrum, MTs make important contributions to diversify the spectrum of products through methylation modifications. Recently, great progress has been made in application of MTs for the biosynthesis of various natural products including phenylpropane compounds, fragrances, hormones and antibiotics, which is summarized in this review. Moreover, we highlighted the strategies of using MTs for efficient production and for expanding the diversity of these methylated natural products, and discussed the current challenges and future prospects in this area.
Biological Products
;
Methylation
;
Methyltransferases/metabolism*
3.ArmA and RmtB Were the Predominant 16S RMTase Genes Responsible for Aminoglycoside-resistant Isolates in Korea.
Tae Hee LEE ; Joo Hee HWANG ; Woo Kon LEE ; Min Kyoung SHIN ; Hye Ryun WOO ; Kyung Min CHUNG ; Chang Seop LEE
Journal of Korean Medical Science 2018;33(42):e262-
Pathogenic gram-negatives that produce 16S ribosomal RNA methyltransferases (16S RMTases) have already been distributed all over the world. To investigate the predominance of aminoglycoside resistance associated with 16S RMTases in Korea, we collected a total of 222 amikacin resistant Gram-negative clinical isolates from patient specimens between 1999 and 2015 from three hospital banks across Korea. ArmA and rmtB were the predominant 16S RMTase genes responsible for aminoglycoside-resistant isolates circulating in Korean community settings although only one rmtA-producing isolate was detected in 2006.
Amikacin
;
Humans
;
Korea*
;
Methyltransferases
;
RNA, Ribosomal, 16S
4.Research advances on the effects of RNA N6-methyladenosine modification in the relevant pathophysiological processes of wound repair.
Chinese Journal of Burns 2022;38(10):989-993
N6-methyladenosine (m6A) exists widely in eukaryotes as a post-transcriptional modification. This modification is dynamically and reversibly regulated by methyltransferases and demethylases, and is involved in regulating biological effects through m6A binding proteins. Recent studies have elucidated that m6A is involved in embryonic skin morphogenesis, wound repair, and pathophysiological processes such as inflammatory response, angiogenesis, and fibrosis. This review summarizes the role of m6A and its related proteins in the related pathophysiological processes of wound repair, so as to provide a new theoretical basis for the treatment strategy of wound repair.
RNA/metabolism*
;
Methylation
;
Adenosine/metabolism*
;
Methyltransferases/metabolism*
5.Dissemination of Plasmid-mediated qnr, aac(6')-Ib-cr, and qepA Genes Among 16S rRNA Methylase Producing Enterobacteriaceae in Korea.
Hee Young KANG ; Migma Dorji TAMANG ; Sung Yong SEOL ; Jungmin KIM
Journal of Bacteriology and Virology 2009;39(3):173-182
Plasmid-mediated quinolone resistance (PMQR) genes: qnr, aac(6')-Ib-cr, and qepA were investigated among 153 armA and 51 rmtB-positive transconjugants and their 204 clinical isolates of Enterobacteriaceae. Overall, qnrB4 and aac(6')-Ib-cr genes were identified in 52.3% (63 K. pneumoniae, 10 E. coli, 4 E. cloacae, and 3 E. aerogenes) and 24.8% (16 K. pneumoniae, 8 E. coli, 6 S. marcescens, 4 E. cloacae, 3 C. freundii and 1 K. oxytoca) of 153 armA-positive isolates, respectively. Four isolates of K. pneumoniae and two isolates of E. coli positive for armA co-harbored both qnrB4 and aac(6')-Ib-cr. The qepA gene was detected in 11.8% (5 E. coli and 1 K. pneumoniae) of 51 rmtB-positive clinical isolates and their transconjugants. Southern hybridization confirmed the co-localization of qepA and rmtB on a large conjugative plasmid of size between 90 to 170 kb. Inc replicon typing showed that qnrB4/6, aac(6')-Ib-cr, and qepA genes were principally disseminated by IncFIIAs, IncL/M, and IncF plasmids, respectively. This study constitutes the first report of the three known PMQR genes among the 16S rRNA methylase producing Enterobacteriaceae isolates of human origin from Korea.
Chimera
;
Cloaca
;
Enterobacteriaceae
;
Humans
;
Korea
;
Methyltransferases
;
Plasmids
;
Pneumonia
;
Replicon
6.miR-140-3p enhanced the osteo/odontogenic differentiation of DPSCs via inhibiting KMT5B under hypoxia condition.
Han ZHENG ; Ning WANG ; Le LI ; Lihua GE ; Haichao JIA ; Zhipeng FAN
International Journal of Oral Science 2021;13(1):41-41
Human dental pulp stem cells (DPSCs) have emerged as an important source of stem cells in the tissue engineering, and hypoxia will change various innate characteristics of DPSCs and then affect dental tissue regeneration. Nevertheless, little is known about the complicated molecular mechanisms. In this study, we aimed to investigate the influence and mechanism of miR-140-3p on DPSCs under hypoxia condition. Hypoxia was induced in DPSCs by Cobalt chloride (CoCl
Cell Differentiation
;
Histone-Lysine N-Methyltransferase
;
Humans
;
Hypoxia
;
Methyltransferases
;
MicroRNAs
7.RNA methylation and neurovascular unit remodeling.
Xinyi LÜ ; Yishu FAN ; Shuntong KANG ; Bo XIAO ; Mengqi ZHANG
Journal of Central South University(Medical Sciences) 2021;46(5):536-544
RNA methylation is of great significance in the regulation of gene expression, among which the more important methylation modifiers are N6-methyladenosine (m6A) and 5-methylcytosine (m5C). The methylation process is mainly regulated by 3 kinds of proteins: methyltransferase, demethylase, and reader. m6A, m5C, and their related proteins have high abundance in the brain, and they have important roles in the development of the nervous system and the repair and remodeling of the vascular system. The neurovascular unit (NVU) is a unit of brain structure and function composed of neurons, capillaries, astrocytes, supporting cells, and extracellular matrix. The local microenvironment for NVU has an important role in nerve cell function repair, and the remodeling of NVU is of great significance in the prognosis of various neurological diseases.
5-Methylcytosine
;
Adenosine/metabolism*
;
Methylation
;
Methyltransferases/metabolism*
;
RNA
8.Synthesis and application of the methyl analogues of S-adenosyl-L-methionine.
Chinese Journal of Biotechnology 2023;39(11):4428-4444
Methylation plays a vital role in biological systems. SAM (S-adenosyl-L-methionine), an abundant cofactor in life, acts as a methyl donor in most biological methylation reactions. SAM-dependent methyltransferases (MTase) transfer a methyl group from SAM to substrates, thereby altering their physicochemical properties or biological activities. In recent years, many SAM analogues with alternative methyl substituents have been synthesized and applied to methyltransferases that specifically transfer different groups to the substrates. These include functional groups for labeling experiments and novel alkyl modifications. This review summarizes the recent progress in the synthesis and application of SAM methyl analogues and prospects for future research directions in this field.
S-Adenosylmethionine/metabolism*
;
Methionine
;
Methyltransferases/metabolism*
;
Methylation
;
Racemethionine
9.Identification of Protein Arginine Methyltransferase 5 as a Regulator for Encystation of Acanthamoeba.
Eun Kyung MOON ; Yeonchul HONG ; Dong Il CHUNG ; Youn Kyoung GOO ; Hyun Hee KONG
The Korean Journal of Parasitology 2016;54(2):133-138
Encystation is an essential process for Acanthamoeba survival under nutrient-limiting conditions and exposure to drugs. The expression of several genes has been observed to increase or decrease during encystation. Epigenetic processes involved in regulation of gene expression have been shown to play a role in several pathogenic parasites. In the present study, we identified the protein arginine methyltransferase 5 (PRMT5), a known epigenetic regulator, in Acanthamoeba castellanii. PRMT5 of A. castellanii (AcPRMT5) contained domains found in S-adenosylmethionine-dependent methyltransferases and in PRMT5 arginine-N-methyltransferase. Expression levels of AcPRMT5 were increased during encystation of A. castellanii. The EGFP-PRMT5 fusion protein was mainly localized in the nucleus of trophozoites. A. castellanii transfected with siRNA designed against AcPRMT5 failed to form mature cysts. The findings of this study lead to a better understanding of epigenetic mechanisms behind the regulation of encystation in cyst-forming pathogenic protozoa.
Acanthamoeba castellanii
;
Acanthamoeba*
;
Epigenesis, Genetic
;
Epigenomics
;
Gene Expression Regulation
;
Methyltransferases
;
Parasites
;
Protein-Arginine N-Methyltransferases*
;
RNA, Small Interfering
;
Trophozoites
10.Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism.
Hye Sook HAN ; Dahee CHOI ; Seri CHOI ; Seung Hoi KOO
Endocrinology and Metabolism 2014;29(4):435-440
Glucose homeostasis is tightly controlled by the regulation of glucose production in the liver and glucose uptake into peripheral tissues, such as skeletal muscle and adipose tissue. Under prolonged fasting, hepatic gluconeogenesis is mainly responsible for glucose production in the liver, which is essential for tissues, organs, and cells, such as skeletal muscle, the brain, and red blood cells. Hepatic gluconeogenesis is controlled in part by the concerted actions of transcriptional regulators. Fasting signals are relayed by various intracellular enzymes, such as kinases, phosphatases, acetyltransferases, and deacetylases, which affect the transcriptional activity of transcription factors and transcriptional coactivators for gluconeogenic genes. Protein arginine methyltransferases (PRMTs) were recently added to the list of enzymes that are critical for regulating transcription in hepatic gluconeogenesis. In this review, we briefly discuss general aspects of PRMTs in the control of transcription. More specifically, we summarize the roles of four PRMTs: PRMT1, PRMT 4, PRMT 5, and PRMT 6, in the control of hepatic gluconeogenesis through specific regulation of FoxO1- and CREB-dependent transcriptional events.
Acetyltransferases
;
Adipose Tissue
;
Arginine*
;
Brain
;
Erythrocytes
;
Fasting
;
Gluconeogenesis
;
Glucose*
;
Homeostasis
;
Liver
;
Metabolism*
;
Methyltransferases*
;
Muscle, Skeletal
;
Phosphoric Monoester Hydrolases
;
Phosphotransferases
;
Protein-Arginine N-Methyltransferases
;
Transcription Factors