1.Environmental Mercury and Its Toxic Effects.
Kevin M RICE ; Ernest M WALKER ; Miaozong WU ; Chris GILLETTE ; Eric R BLOUGH
Journal of Preventive Medicine and Public Health 2014;47(2):74-83
Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.
Body Burden
;
*Environmental Exposure
;
Environmental Pollutants/*toxicity
;
Humans
;
Methylmercury Compounds/*toxicity
;
Nervous System/*drug effects
;
Seafood/analysis
2.Methylmercury toxic mechanism related to protein degradation and chemokine transcription.
Jin-Yong LEE ; Gi-Wook HWANG ; Akira NAGANUMA ; Masahiko SATOH
Environmental Health and Preventive Medicine 2020;25(1):30-30
Methylmercury is an environmental pollutant that causes neurotoxicity. Recent studies have reported that the ubiquitin-proteasome system is involved in defense against methylmercury toxicity through the degradation of proteins synthesizing the pyruvate. Mitochondrial accumulation of pyruvate can enhance methylmercury toxicity. In addition, methylmercury exposure induces several immune-related chemokines, specifically in the brain, and may cause neurotoxicity. This summary highlights several molecular mechanisms of methylmercury-induced neurotoxicity.
Animals
;
Chemokines
;
drug effects
;
metabolism
;
Humans
;
Methylmercury Compounds
;
toxicity
;
Mice
;
Neurotoxins
;
toxicity
;
Proteolysis
;
drug effects
;
Rats
;
Saccharomyces cerevisiae
;
drug effects
3.Protective effects of garlic juice against embryotoxicity of methylmercuric chloride administered to pregnant Fischer 344 rats.
Jin Heon LEE ; Hee Sook KANG ; Jaehoon KANG
Yonsei Medical Journal 1999;40(5):483-489
In order to investigate the beneficial effects of 0.5 or 1.0 g/kg Korean garlic juice against the embryotoxicity of 20 mg/kg methylmercury chloride (MMC, CH3HgCl), pregnant Fisher 344 rats were simultaneously orally administered on day 7 of gestation. On day 20 of gestation the dams were laparotomized under ether anesthesia, and the fetuses were removed and examined for toxicity of methylmercury. Garlic juice depressed the toxicity in terms of some parameters. In the case of simultaneous treatment with 0.1 g/kg garlic juice and MMC, rates of increase were 17.5% in maternal body weight, 13.2% and 41.9% in fetal and litters' weight respectively, and 37.0% in fetal survival rate. Decreasing rates were 10.0% in maternal death rate, and 6.9% and 31.3% in pre- and post-implantation loss respectively. Decreasing rates of mercury levels in dams were 67.2% in liver, 57.6% in brain, 47.2% in kidney, 42.1% in spleen and 40.9% in blood. As well, decreasing rates of mercury level in fetuses were 54.9% in all body burden, 55.9% in liver, 46.7% in kidney and 37% in brain, respectively. The number of fetal ossification centers were reduced by 23.8% to 58.0% following simultaneous treatment with 1.0 g/kg garlic juice. These findings indicated that garlic juice effectively inhibited the embryotoxicity of methylmercury in pregnant Fischer 344 rats.
Animal
;
Body Weight/drug effects
;
Embryo/drug effects*
;
Embryo Loss/prevention & control
;
Embryo Loss/chemically induced
;
Female
;
Fetal Weight/drug effects
;
Garlic*
;
Methylmercury Compounds/toxicity*
;
Methylmercury Compounds/pharmacokinetics
;
Osteogenesis/drug effects
;
Pregnancy
;
Rats
;
Rats, Inbred F344
;
Tissue Distribution
4.Studies on subacute toxicity of Wansheng Huafeng Dan in rats.
Fang PENG ; Hong YANG ; Qin WU ; Jie LIU ; Jingzhen SHI
China Journal of Chinese Materia Medica 2012;37(7):1017-1022
OBJECTIVETo compare sub-acute toxic effects of cinnabar and Wansheng Huafeng Dan with mercury chloride and methyl-mercury.
METHODHealthy SD rats were orally administered with Wansheng Huafeng Dan (0.42 g x kg(-1)), cinnabar (0.15 g x kg(-1)), HgS (0.15 g x kg(-1)), HgCl2 (0.02 g x kg(-1)), MeHg (0.001 g x kg(-1)) and saline for 21 days under observed and their weights were monitored. After the final administration, they were decapitated and their blood, liver, kidney and brain tissues were collected for calculating hepatic and renal indexes and detecting the contents of serum glutamic pyruvic transaminase, urea nitrogen and creatinine and the mercury accumulation in liver, kidney and brain tissues. Besides, relative expressions of liver metallothionein-1 (MT-1) and cytochrome P450 gene subtypes (Cyp1a1, Cyp2b1, Cyp2e1, Cyp3a2, Cyp4a10) mRNA.
RESULTHgCl2 caused obvious weight lose in rats. Mercury contents in liver and kidney were markedly increased by HgCl2 and MeHg, and MeHg markedly increased mercury contents of brain either, but these advent effects were not notable in Wansheng Huafeng Dan and cinnabar groups. However, blood biochemistry and histopathology did not show significant changes in all groups. The expression of rat hepatic MT-1 mRNA was remarkably induced by both HgCl2 and MeHg. The expression of hepatic Cyp3a2 was increased by Wansheng Huafeng Dan and cinnabar, while the expression of Cyp2e1 was inhibited by HgCl2 and MeHg.
CONCLUSIONThe administration of Wansheng Huafeng Dan with equivalent dose for three weeks shows a much low sub-acute toxicity than HgCl2 and MeHg in rats.
Administration, Oral ; Animals ; Brain ; drug effects ; Drugs, Chinese Herbal ; administration & dosage ; adverse effects ; Kidney ; drug effects ; Liver ; drug effects ; Male ; Mercuric Chloride ; toxicity ; Mercury Compounds ; toxicity ; Methylmercury Compounds ; toxicity ; Rats ; Rats, Sprague-Dawley
5.Effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on gene expression of renal transporters in mice.
Yi SUI ; Hong YANG ; Xing-zhong TIAN ; Jie LIU ; Jing-zhen SHI
China Journal of Chinese Materia Medica 2015;40(3):506-510
OBJECTIVETo study the effect of Zhusha Anshen pill, cinnabar, HgS, HgCl2 and MeHg on the gene expression of renal transporters in mice.
METHODHealthy male mice were given equivalent physiological saline, Zhusha Anshen pill (1.8 g · kg(-1), containing 0.17 g · kg(-1) of mercury), cinnabar (0.2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), high dose cinnabar (2 g · kg(-1), containing 1.7 g · kg(-1) of mercury), HgS (0.2 g · kg(-1), containing 0.17 g · kg(-1) of mercury), HgCl2 (0.032 g · kg(-1), containing 0. 024 g · kg(-1) of mercury), MeHg (0.026 g · kg(-1), containing 0.024 g · kg(-1) of mercury), once daily, for 30 d, measuring body mass gain. 30 days later, the mice were sacrificed. The mercury accumulation in kidneys was detected with atomic fluorescence spectrometer. Expressions of Oat1, Oat2, Oat3, Mrp2, Mrp4, Urat1 were detected with RT-PCR.
RESULTCompared with the normal control group, a significant accumulation of Hg in kidney in HgCl2 and MeHg groups was observed (P <0.05), but these changes were not found in other groups. Compared with normal control group, mRNA expressions of Oat1 and Oat2 were evidently lower in HgCl2 and MeHg groups, but mRNA expressions of Mrp2 were apparently higher in HgCl2 group (P <0.05), mRNA expression of Mrp4 was significant higher in HgCl2 and MeHg groups, and mRNA expression of Urat1 was apparently lower in MeHg group.
CONCLUSIONHgCl2 and MeHg groups show significant difference from the normal group in mercury accumulation in kidneys and gene expression of kidney transporters, but with no difference between other groups and the normal group. Compared with HgCl2 and MeHg, cinnabar and its compounds could cause lower renal toxicity to mice.
Animals ; Carrier Proteins ; genetics ; Drugs, Chinese Herbal ; toxicity ; Gene Expression ; drug effects ; Kidney ; drug effects ; metabolism ; Male ; Mercuric Chloride ; toxicity ; Mercury Compounds ; toxicity ; Methylmercury Compounds ; toxicity ; Mice ; Multidrug Resistance-Associated Proteins ; genetics ; Organic Anion Transport Protein 1 ; genetics ; Organic Anion Transporters, Sodium-Independent ; genetics
6.Methylmercury Exposure and Health Effects.
Young Seoub HONG ; Yu Mi KIM ; Kyung Eun LEE
Journal of Preventive Medicine and Public Health 2012;45(6):353-363
Methylmercury is a hazardous substance that is of interest with regard to environmental health, as inorganic mercury circulating in the general environment is dissolved into freshwater and seawater, condensed through the food chain, ingested by humans, and consequently affects human health. Recently, there has been much interest and discussion regarding the toxicity of methylmercury, the correlation with fish and shellfish intake, and methods of long-term management of the human health effects of methylmercury. What effects chronic exposure to a low concentration of methylmercury has on human health remains controversial. Although the possibility of methylmercury poisoning the heart and blood vessel system, the reproductive system, and the immune system is continuously raised and discussed, and the carcinogenicity of methylmercury is also under discussion, a clear conclusion regarding the human health effects according to exposure level has not yet been drawn. The Joint FAO/WHO Expert Committee on Food Additives proposed to prepare additional fish and shellfish intake recommendations for consumers based on the quantified evaluation of the hazardousness of methylmercury contained in fish and shellfish, methylmercury management in the Korea has not yet caught up with this international trend. Currently, the methylmercury exposure level of Koreans is known to be very high. The starting point of methylmercury exposure management is inorganic mercury in the general environment, but food intake through methylation is the main exposure source. Along with efforts to reduce mercury in the general environment, food intake management should be undertaken to reduce the human exposure to methylmercury in Korea.
Animals
;
*Environmental Exposure
;
Fishes/metabolism
;
Food Chain
;
Humans
;
Mercury Poisoning, Nervous System/etiology
;
Methylmercury Compounds/chemistry/*metabolism/toxicity
;
Neurons/drug effects
;
Oxidative Stress/drug effects
;
Public Health
;
Reproduction/drug effects
;
Thymocytes/cytology/drug effects
7.Expression of c-fos in rat brain as a prelude marker of central nervous system injury in response to methylmercury-stimulation.
Jin-Ping CHENG ; Wen-Hua WANG ; Jin-Ping JIA ; Min ZHENG ; Wei SHI ; Xue-Yu LIN
Biomedical and Environmental Sciences 2006;19(1):67-72
OBJECTIVETo probe into the prelude marker of central nervous system injury in response to methyl mercury chloride (MMC) stimulation and the signal transduction molecular mechanism of injury in rat brain induced by MMC.
METHODSThe expression of c-fos mRNA in brain and the expression of c-FOS protein in cortex, hippocampus and ependyma were observed using reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemical methods. The control group was injected with physiological saline of 0.9%, while the concentrations for the exposure groups were 0.05 and 0.5, 5 mg/kg MMC respectively, and the sampling times points were 20, 60, 240, 1440 min.
RESULTSThe expression of c-FOS protein in cortex and hippocampus increased significantly, the accumulation of mercury in the brain induced by 0.05 mg/Kg MMC for 20 min had no significant difference compared with the control group. The mean value was 0.0044 mg/Kg, while the protein c-FOS expression had significant difference compared with the control group (P < 0.01). More sensitive expression occurred in hippocampus and cortex, but not in ependyma. Conclusion The expression of c-FOS protein in cortex and hippocampus can predict the neurotoxicity of MMC in the early time, and immediately early gene (IEG) c-fos participates in the process of brain injury induced by MMC.
Animals ; Biomarkers ; metabolism ; Brain ; drug effects ; metabolism ; Cerebral Cortex ; drug effects ; metabolism ; Gene Expression Regulation ; drug effects ; Hippocampus ; drug effects ; metabolism ; Methylmercury Compounds ; pharmacokinetics ; toxicity ; Proto-Oncogene Proteins c-fos ; biosynthesis ; genetics ; RNA, Messenger ; metabolism ; Rats ; Rats, Sprague-Dawley
8.Toxic effects of methylmercury, arsanilic acid and danofloxacin on the differentiation of mouse embryonic stem cells into neural cells.
Seok Jin KANG ; Sang Hee JEONG ; Eun Joo KIM ; Young Il PARK ; Sung Won PARK ; Hyo Sook SHIN ; Seong Wan SON ; Hwan Goo KANG
Journal of Veterinary Science 2014;15(1):61-71
This study was performed to assess the neurotoxic effects of methylmercury, arsanilic acid and danofloxacin by quantification of neural-specific proteins in vitro. Quantitation of the protein markers during 14 days of differentiation indicated that the mouse ESCs were completely differentiated into neural cells by Day 8. The cells were treated with non-cytotoxic concentrations of three chemicals during differentiation. Low levels of exposure to methylmercury decreased the expression of GABAA-R and Nestin during the differentiating stage, and Nestin during the differentiated stage. In contrast, GFAP, Tuj1, and MAP2 expression was affected only by relatively high doses during both stages. Arsanilic acid affected the levels of GABA(A)-R and GFAP during the differentiated stage while the changes of Nestin and Tuj1 were greater during the differentiating stage. For the neural markers (except Nestin) expressed during both stages, danofloxacin affected protein levels at lower concentrations in the differentiated stage than the differentiating stage. Acetylcholinesterase activity was inhibited by relatively low concentrations of methylmercury and arsanilic acid during the differentiating stage while this activity was inhibited only by more than 40 microM of danofloxacin in the differentiated stage. Our results provide useful information about the different toxicities of chemicals and the impact on neural development.
Acetylcholinesterase/metabolism
;
Animals
;
Arsanilic Acid/*toxicity
;
Cell Differentiation/*drug effects
;
Embryonic Stem Cells/cytology/*drug effects
;
Environmental Pollutants/*toxicity
;
Fluorescent Antibody Technique
;
Fluoroquinolones/*toxicity
;
Gene Expression Regulation/drug effects
;
Methylmercury Compounds/*toxicity
;
Mice
;
Nerve Tissue Proteins/metabolism
;
Neurons/cytology/*drug effects
;
Tetrazolium Salts/metabolism
;
Thiazoles/metabolism
9.Consumption of mercury-contaminated rice induces oxidative stress and free radical aggravation in rats.
Xiu-Ling JIE ; Gui-Wen JIN ; Jin-Ping CHENG ; Wen-Hua WANG ; Jing LU ; Li-Ya QU
Biomedical and Environmental Sciences 2007;20(1):84-89
OBJECTIVETo study the oxidative stress induced by consumption of mercury-contaminated rice in rats, and to assess the possible public health risk of mercury contamination in Wanshan mining area.
METHODSSprague Dawley rats were fed the mercury-contaminated rice produced from Wanshan area for 90 days. The antioxidant status and the free radicals in rat serum were evaluated.
RESULTSHigh mercury accumulation in organs of rats fed the mercury-contaminated rice confirmed the server pollution of mercury in Wanshan mining area. The intensity of electron spin resonance (ESR) signal increased by 87.38% in rats fed the rice from Wanshan compared with that in the control rats fed the rice from Shanghai, suggesting that chronic dietary consumption of rice from mercury mining area could induce an aggravation of free radicals. Feeding the mercury-contaminated rice was associated with significant decreases in the antioxidant enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and concentration of serum nitric oxide (NO), but it had no effect on serum nitric oxide synthase (NOS) activity. Feeding the mercury-contaminated rice raised the level of serum malonyldialdehyde (MDA), indicating the occurrence of oxidative stress.
CONCLUSIONThe long-term dietary consumption of mercury-contaminated rice induces the aggravation of free radicals and exerts oxidative stress.
Animals ; Brain ; metabolism ; China ; Environmental Pollutants ; analysis ; pharmacokinetics ; toxicity ; Food Contamination ; analysis ; Free Radicals ; blood ; Glutathione Peroxidase ; blood ; Industrial Waste ; adverse effects ; Kidney ; metabolism ; Liver ; metabolism ; Malondialdehyde ; blood ; Mercury ; analysis ; pharmacokinetics ; toxicity ; Methylmercury Compounds ; analysis ; pharmacokinetics ; toxicity ; Nitric Oxide ; blood ; Nitric Oxide Synthase ; blood ; Oryza ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Superoxide Dismutase ; blood