2.Loss of O-GlcNAcylation on MeCP2 at Threonine 203 Leads to Neurodevelopmental Disorders.
Juanxian CHENG ; Zhe ZHAO ; Liping CHEN ; Ying LI ; Ruijing DU ; Yan WU ; Qian ZHU ; Ming FAN ; Xiaotao DUAN ; Haitao WU
Neuroscience Bulletin 2022;38(2):113-134
Mutations of the X-linked methyl-CpG-binding protein 2 (MECP2) gene in humans are responsible for most cases of Rett syndrome (RTT), an X-linked progressive neurological disorder. While genome-wide screens in clinical trials have revealed several putative RTT-associated mutations in MECP2, their causal relevance regarding the functional regulation of MeCP2 at the etiologic sites at the protein level requires more evidence. In this study, we demonstrated that MeCP2 was dynamically modified by O-linked-β-N-acetylglucosamine (O-GlcNAc) at threonine 203 (T203), an etiologic site in RTT patients. Disruption of the O-GlcNAcylation of MeCP2 specifically at T203 impaired dendrite development and spine maturation in cultured hippocampal neurons, and disrupted neuronal migration, dendritic spine morphogenesis, and caused dysfunction of synaptic transmission in the developing and juvenile mouse cerebral cortex. Mechanistically, genetic disruption of O-GlcNAcylation at T203 on MeCP2 decreased the neuronal activity-induced induction of Bdnf transcription. Our study highlights the critical role of MeCP2 T203 O-GlcNAcylation in neural development and synaptic transmission potentially via brain-derived neurotrophic factor.
Animals
;
Humans
;
Methyl-CpG-Binding Protein 2/metabolism*
;
Mice
;
Neurodevelopmental Disorders/genetics*
;
Rett Syndrome/genetics*
;
Synaptic Transmission
;
Threonine
3.Clinical and genetic analysis of two rare male patients with Rett syndrome.
Xuan ZHENG ; Lei LIU ; Yanhong WANG ; Yali WANG ; Huiying WANG ; Yuhui DU ; Liujiong GAO ; Yaodong ZHANG ; Shiyue MEI
Chinese Journal of Medical Genetics 2022;39(5):488-493
OBJECTIVE:
To conduct clinical and genetic analysis of two male patients with atypical Rett syndrome.
METHODS:
Collection of clinical data in the two patients and these parents; whole exome sequencing (WES) was used to detect the potential variants, which were verified by Sanger sequencing. X chromosome inactivation (XCI) detection is performed in the Patient 1's mother to detect the allelic expression difference of the MECP2 gene.
RESULTS:
Patient 1, a 5-year and 10-month-old boy, had mental disorders and mild intellectual disability (ID) (IQ: 54), whose mother had ID. Patient 2 was a 9-month and 18-day-old male presented with recurrent infections, respiratory insufficiency, hypotonia and global developmental delay. WES indentified a hemizygous mutation, c.499C>T (p.R167W), in the MECP2 gene in patient 1, which was inherited from his mother. The inactivation of X chromosome is skewed, and the expression ratio of wild-type and mutant MECP2 is 100%:0. Patient 2 was found a de novo splicing mutation, c.62+2_62+3del in the MECP2 gene. They were both reported pathogenic variant related to Rett syndrome. c.499C>T (p.R167W) was defined as likely pathogenic (PS1+PM2+PP3) and c.62+2_62+3del was pathogenic (PVS1+PM2+PM6) based on American College of Medical Genetics and Genomics standards and guidelines.
CONCLUSION
Both the two patients were diagnosed with rare male Rett syndrome, which had atypical clinical manifestations and large difference. Above foundings have revealed novel phenotypes in Chinese male patients with Rett syndrome.
Craniosynostoses
;
Female
;
Genetic Testing
;
Humans
;
Intellectual Disability/genetics*
;
Male
;
Methyl-CpG-Binding Protein 2/genetics*
;
Mutation
;
Phenotype
;
Rett Syndrome/genetics*
5.Clinical phenotype and genetic analysis of MECP2 duplication syndrome.
Duo CHEN ; Luxun WANG ; Yaqin HOU ; Panlai SHI ; Guijun QIN ; Xiangdong KONG
Chinese Journal of Medical Genetics 2021;38(12):1190-1193
OBJECTIVE:
To analyze the clinical symptom and parental origin of patients with MECP2 duplication syndrome in order to provide a basis for genetic counseling and prenatal diagnosis.
METHODS:
Clinical symptoms of four patients who were diagnosed with MECP2 duplication syndrome by copy number variation sequencing (CNV-Seq) were reviewed. The maternal origin of the duplications were verified.
RESULTS:
All patients were males, and CNV-Seq revealed that they have all harbored a duplication in the Xq28 region spanning 0.32 ~ 0.86 Mb, which were derived from asymptomatic mothers. The clinical symptoms of three patients with three copies included delayed speech, intellectual disability, and muscular hypotonia, while the patient with four copies had died at 6 months after birth, with clinical symptoms including recurrent infections, seizures, and spasticity.
CONCLUSION
The four cases of MECP2 duplication syndrome have shown complete penetrance and have all derived from asymptomatic mothers. As a stable and reliable method, CNV-Seq can accurately detect the MECP2 duplication syndrome.
Chromosomes, Human, X
;
DNA Copy Number Variations
;
Gene Duplication
;
Humans
;
Male
;
Mental Retardation, X-Linked
;
Methyl-CpG-Binding Protein 2/genetics*
;
Phenotype
6.Molecular diagnosis and functional study of a pedigree affected with Lubs X-linked mental retardation syndrome.
Chen JIANG ; Nan PAN ; Weigang LYU ; Ying PENG ; Jing LIU ; Ruolan GUO ; Jiazhen CHANG ; Desheng LIANG ; Lingqian WU
Chinese Journal of Medical Genetics 2019;36(4):340-343
OBJECTIVE:
To explore the genetic basis for a pedigree affected with X-linked mental retardation.
METHODS:
The proband was subjected to chromosomal karyotyping, FMR1 mutation testing and copy number variation analysis with a single nucleotide polymorphism microarray (SNP array). His family members were subjected to multiplex ligation-dependent probe amplification (MLPA) assaying. Expression of genes within the repeated region were analyzed.
RESULTS:
The proband had a normal chromosomal karyotype and normal number of CGG repeats within the FMR1 gene. SNP array identified a 370 kb duplication in Xq28 (ChrX: 153 027 633-153 398 515), which encompassed 14 genes including MECP2. The patient was diagnosed as Lubs X-linked mental retardation syndrome (MRXSL). MLPA confirmed the presence of copy number variation, its co-segregation with the disease, in addition with the carrier status of females. Genes from the duplicated region showed higher levels of expression (1.79 to 5.38 folds) within peripheral blood nucleated cells of the proband.
CONCLUSION
The patients were diagnosed with MRXSL. The expression of affected genes was up-regulated due to the duplication. Genetic counseling and prenatal diagnosis may be provided based on the results.
DNA Copy Number Variations
;
Female
;
Fragile X Mental Retardation Protein
;
Humans
;
Mental Retardation, X-Linked
;
Methyl-CpG-Binding Protein 2
;
Pedigree
;
Pregnancy
7.Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells.
Hyun Myung KO ; Yeonsun JIN ; Hyun Ho PARK ; Jong Hyuk LEE ; Seung Hyo JUNG ; So Young CHOI ; Sung Hoon LEE ; Chan Young SHIN
The Korean Journal of Physiology and Pharmacology 2018;22(6):679-688
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Acetylation
;
Astrocytes
;
Autism Spectrum Disorder
;
Brain
;
Brain-Derived Neurotrophic Factor*
;
Butyric Acid
;
Histones
;
Methyl-CpG-Binding Protein 2
;
Neurites
;
Neurodevelopmental Disorders
;
Neurons
;
RNA, Messenger
;
Stem Cells*
;
Synapses
;
Tissue Plasminogen Activator
;
Up-Regulation
;
Valproic Acid*
8.Puerarin Up-regulates Methyl-CpG Binding Protein 2 Phosphorylation in Hippocampus of Vascular Dementia Rats.
Hu-Qing WANG ; Meng ZHANG ; Jia-Xin ZHAO ; Hai-Qin WU ; Zhen GAO ; Gui-Lian ZHANG ; Ru ZHANG
Chinese journal of integrative medicine 2018;24(5):372-377
OBJECTIVETo observe the effect of puerarin on methyl-CpG binding protein 2 (MeCP2) phosphorylation (pMeCP2) in the hippocampus of a rat model of vascular dementia (VD).
METHODSThirty-six healthy Sprague-Dawley rats were randomly assigned to the sham-operated group, dementia group and puerarintreated group using a random number table (n=12 per group). The modifified permanent bilateral common carotid artery occlusion method was used to establish the VD model. The sham-operated and dementia groups were given 2 mL/d of saline, while the puerarin-treated group was given 100 mg/(kg•d) of puerarin for 17 days. The learning and memory abilities were evaluated by the Morris water maze test. Hematoxylin-eosin staining, immunohistochemical (IHC) staining and Western blot analysis were carried out to observe changes in neuron morphology and in level of pMeCP2 in the hippocampus, respectively.
RESULTSThe morphologies of rat hippocampal neurons in the puerarintreated group were markedly improved compared with the dementia group. The escape latency of the dementia group was significantly longer than the sham-operated group (P<0.05), while the puerarin-treated group was obviously shorter than the dementia group (P<0.05). Cross-platform times of the dementia group were signifificantly decreased compared with the sham-operated group (P<0.05), while the puerarin-treated group was obviously increased compared with the dementia group (P<0.05). IHC staining showed no significant difference in the number of MeCP2 positive cells among 3 groups (P>0.05). The number of pMeCP2 positive cells in the CA1 region of hippocampus in the dementia group was signifificantly increased compared with the sham-operated group, and the puerarin-treated group was signifificantly increased compared with the dementia group (both P<0.05). Western blot analysis showed no signifificant difference of MeCP2 expression among 3 groups (P>0.05). The expression of pMeCP2 in the dementia group was signifificantly increased compared with the sham-operated group, while it in the puerarin-treated group was signifificantly increased compared with the dementia group (P<0.05).
CONCLUSIONPuerarin could play a role in the protection of nerve cells through up-regulating pMeCP2 in the hippocampus, improving neuron morphologies, and enhancing learning and memory ablities in a rat model of VD.
Animals ; Dementia, Vascular ; drug therapy ; genetics ; physiopathology ; Hippocampus ; pathology ; Isoflavones ; chemistry ; pharmacology ; therapeutic use ; Memory ; drug effects ; Methyl-CpG-Binding Protein 2 ; metabolism ; Phosphorylation ; drug effects ; Rats, Sprague-Dawley ; Up-Regulation ; drug effects
9.Interaction between abnormal expression of fragile histidine triad and methyl-CpG-binding protein 2 on cervical cancerization.
Q YANG ; Y LI ; L WANG ; Z C SONG ; M J FENG ; L DING ; J T WANG
Chinese Journal of Epidemiology 2018;39(5):689-693
Objective: To explore the relationship between abnormal expression of fragile histidine triad (FHIT) gene and methyl-CpG-binding protein 2 (MeCP2) as well as their interaction on cervical cancerization. Methods: A total of 73 patients with cervical squamous cell carcinoma (SCC), 113 patients with cervical intraepithelial neoplasia (CIN Ⅰ, n=45; CINⅡ/Ⅲ, n=68) and 60 women with normal cervix (NC) were included in the study. Real time PCR and Western blot were performed to detect the expression levels of mRNA and protein about FHIT and MeCP2, respectively. The methylation status of FHIT gene CpG island was tested by methylation-specifc PCR (MSP). Kruskal-Wallis H test, χ(2) test, trend χ(2) test and Spearman correlation analysis were conducted with software SPSS 20.0. The interaction was evaluated by generalized multifactor dimensionality reduction (GMDR) model. Results: With the deterioration of cervical lesion, the methylation rates of FHIT gene CpG island (χ(2)=18.64, P<0.001; trend χ(2)=18.08, P<0.001) increased gradually, while the expression levels of FHIT mRNA (H=27.32, P<0.001; trend χ(2)=12.65, P<0.001) and protein (H=47.10, P<0.001; trend χ(2)=29.79, P<0.001) decreased gradually. There was a negative correlation between the methylation rates of FHIT gene CpG island and the expression level of FHIT protein (r=-0.226, P<0.001). The levels of MeCP2 mRNA (H=26.19, P<0.001; trend χ(2)=11.81, P=0.001) and protein (H=69.02, P<0.001; trend χ(2)=47.44, P<0.001) increased gradually with the aggravation of cervical lesions. There was a positive correlation between the expression level of MeCP2 protein and the FHIT mRNA Ct ratio (r=0.254, P<0.001). Expression of proteins were negatively correlated between MeCP2 and FHIT (r=-0.213, P=0.001). The results analyzed by GMDR model showed that there were interactions among high MeCP2 protein expression, the CpG island methylation of FHIT and mRNA and protein expression in CINⅡ/Ⅲ group, and among high MeCP2 mRNA and protein expression, the CpG island methylation of FHIT and low mRNA and protein expression in SCC group. Conclusion: High expression of MeCP2 mRNA and protein, the CpG island methylation and low mRNA and protein expression of FHIT could increase the risk of cervical carcinogenesis, and there might be a synergistic effect on cervical carcinogenesis.
Acid Anhydride Hydrolases/metabolism*
;
Carcinoma, Squamous Cell/pathology*
;
DNA Methylation
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Methyl-CpG-Binding Protein 2/metabolism*
;
Neoplasm Proteins/metabolism*
;
Polymerase Chain Reaction/methods*
;
RNA, Messenger
;
Uterine Cervical Neoplasms/pathology*
;
Uterine Cervical Dysplasia/pathology*
10.MECP2 gene and MECP2-related diseases.
Chinese Journal of Contemporary Pediatrics 2017;19(5):494-497

Result Analysis
Print
Save
E-mail