1.Advances in biomolecular machine: methane monooxygenases.
Jixue LU ; Shizhen WANG ; Baishan FANG
Chinese Journal of Biotechnology 2015;31(7):1015-1023
Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced.
Catalysis
;
Methane
;
metabolism
;
Methanol
;
metabolism
;
Oxygenases
;
metabolism
2.Biodegradation of tetrachlorothylene using methanol as co-metabolic substrate.
Qi YANG ; Hai-Tao SHANG ; Hui-Di LI ; Hong-Bo XI ; Jian-Long WANG
Biomedical and Environmental Sciences 2008;21(2):98-102
OBJECTIVETo investigate the biodegradation of tetrachloroethylene (PCE) using methanol as electron donor by acclimated anaerobic sludge.
METHODSHP-6890 gas chromatograph (GC), together with HP-7694 autosampler, was used to analyze the concentration of PCE and intermediates.
RESULTSPCE could be decholrinated reductively to DCE via TCE, and probably further to VC and ethylene. The degradation of PCE and TCE conformed to first-order reaction kinetics. The reaction rate constants were 0.8991 d(-1) and 0.068 d(-1), respectively, and the corresponding half-life were 0.77 d and 10.19 d, respectively. TCE production rate constant was 0.1333 d(-1), showing that PCE was degraded more rapidly than TCE.
CONCLUSIONMethanol is an electron donor suitable for PCE degradation and the cometabolic electron donors are not limiting factors for PCE degradation.
Anaerobiosis ; Chromatography, Gas ; Kinetics ; Methanol ; metabolism ; Sewage ; microbiology ; Trichloroethylene ; metabolism
3.Advances in biotransformation of methanol into chemicals.
Kang LIU ; Yangyi QIAO ; Shangjie ZHANG ; Feng GUO ; Jiangfeng MA ; Fengxue XIN ; Wenming ZHANG ; Min JIANG
Chinese Journal of Biotechnology 2023;39(6):2430-2448
Methanol has become an attractive substrate for the biomanufacturing industry due to its abundant supply and low cost. The biotransformation of methanol to value-added chemicals using microbial cell factories has the advantages of green process, mild conditions and diversified products. These advantages may expand the product chain based on methanol and alleviate the current problem of biomanufacturing, which is competing with people for food. Elucidating the pathways involving methanol oxidation, formaldehyde assimilation and dissimilation in different natural methylotrophs is essential for subsequent genetic engineering modification, and is more conducive to the construction of novel non-natural methylotrophs. This review discusses the current status of research on methanol metabolic pathways in methylotrophs, and presents recent advances and challenges in natural and synthetic methylotrophs and their applications in methanol bioconversion.
Humans
;
Methanol/metabolism*
;
Metabolic Engineering
;
Metabolic Networks and Pathways
;
Biotransformation
4.Studies of enzymatic synthesis of biodiesel.
Li DENG ; Tian-Wei TAN ; Fang WANG
Chinese Journal of Biotechnology 2003;19(1):97-101
Biodiesel, an alternative diesel fuel, fatty acid alkyl ester, is made from renewable biological sources such as vegetable oils and animal fats. Two processes for biodiesel synthesis, enzymatic lipase catalytic esterification from fatty acid and transesterification from oils and fats, was investigated. The effects of various lipases, enzyme amount and purity, solvent, water absorbent, inhibition of short chains alcohol, specificity of substrate, molar ratio of substrate on esterification were studied in detail. The esterification degree with the optimal parameter and process can reach up to 92%. The purity of biodiesel obtained by separation and purification is up to 98%, and the half-life of the immobilized lipase for the esterification process can be up to 360hr, Moreover, the preliminary studies of the transesterification including the amount of methanol and mode of adding methanol into reaction system were made. The transesterification degree with adding methanol stepwise can reach 83%.
Biofuels
;
Enzymes, Immobilized
;
metabolism
;
Esterification
;
Lipase
;
metabolism
;
Methanol
;
metabolism
;
Plant Oils
;
metabolism
5.Fermentation behaviors of recombinant Pichia pastoris under inhibited methanol concentration.
Xiang-Shan ZHOU ; Wei-Min FAN ; Yuan-Xing ZHANG
Chinese Journal of Biotechnology 2003;19(5):618-622
Chemostat culture was performed to characterize the growth, substrate consumption and the hirudin production, and to disclose their interrelations in the fermentation of recombinant Pichia pastoris. The Andrew substrate-inhibited growth model is more suitable than Monod model to simulate the growth of Pichia pastoris on methanol. Therefore, two stationary states can be obtained in the continuous culture at a certain dilution rate because of the substrate inhibition on cell growth. The stationary state could be obtained if only the dilution rate not more than 0.048 h(-1) in the continuous fermentation. The concentrations of cell, methanol and hirudin were constant after 50 h continuous culture with dilution rate at 0.04 h(-1). However, it could not be obtained when the dilution rate more than 0.048 h(-1) because the other stationary point at S > 0.048 h(-1) is unstable. Therefore, it was found that the cell concentration declined and the methanol concentration increased from 2.9 g/L to 18.1 g/L within 18h at dilution rate 0.06 h(-1). Thus, the fed-batch culture with a constant specific growth rate was carried out to disclose the fermentation behavior at high and constant methanol concentration in aid of a methanol sensor. The theoretical maximum specific growth rate, microm = 0.0464 h(-1), was found under critical methanol concentration, Scrit = 3.1 g/L. The growth of P. pastoris was typically methanol-limited at the methanol concentration S < Scrit. It was, however, inhibited at S > Scrit. The maximum specific Hir65 production rate qp was obtained at 0.2 mg/(g x h) when methanol concentration and mu were 0.5 g/L and 0.02 h(-1), respectively. The specific Hir65 production rate qp increased with the increase of mu and S at mu < 0.02 h(-1), and decreased at mu > 0.02 h(-1). The specific methanol consumption rate increased with the increase of S when S < 5 g/L, but decreased when S > 5 g/L. At last, the high Hir65 production rate 0.2 mg/(g x h) was obtained in the fermentation conducted under methanol-limited concentration and mu controlled at 0.5 g/L and 0.02 h(-1), respectively, while the specific methanol consumption rate is low only at 0.04 g/(g x h), showing the potential for the strategy of getting high Hir65 production rate at the low consumption of methanol.
Fermentation
;
physiology
;
Hirudins
;
metabolism
;
Methanol
;
metabolism
;
Pichia
;
growth & development
;
metabolism
;
Recombination, Genetic
6.Effects of mixed carbon sources on glucose oxidase production by recombinant Pichia pastoris.
Yina SHEN ; Lei GU ; Juan ZHANG ; Jian CHEN ; Guocheng DU
Chinese Journal of Biotechnology 2013;29(7):927-936
Glucose oxidase (GOD) is an important industrial enzyme with many potential applications. In order to increase the production and productivity of GOD by recombinant Pichia pastoris GS115, we investigated the feeding strategies of mixed carbon sources during induction phase, based on results of the optimization of initial cell and methanol concentration on GOD production. The optimal initial cell and methanol concentration were 100 g/L and 18 g/L. During induction phase, the mixed-carbon-sources strategies showed that glycerol, sorbitol or mannitol co-feeding with methanol could enhance GOD production. With mannitol co-feeding (20:1(W/W)), the maximum GOD production and maximum GOD productivity reached 711.3 U/mL and 4.60 U/(mL x h) after an induction period of 156 h. Compared to the control, the enhancements of GOD production and productivity were 66.3% and 67.9%, respectively. Meanwhile, we found an appropriate mannitol co-feeding strategy that would not inhibit the expression of promote. The activity of alcohol oxidase was 8.8 U/g, which was enhanced by 69.2% compared to the control (5.2 U/g). We can use the same optimization process to improve the production of other proteins from recombinant Pichia pastoris by changing the fermentation parameters.
Carbon
;
metabolism
;
Fermentation
;
Glucose Oxidase
;
biosynthesis
;
Glycerol
;
metabolism
;
Industrial Microbiology
;
Mannitol
;
metabolism
;
Methanol
;
metabolism
;
Pichia
;
metabolism
;
Sorbitol
;
metabolism
7.Feeding of mixed-carbon-resource during the expression phase in cultivation of recombinant Pichia pastoris expressing angiostatin.
Jing-Li XIE ; Qing-Wei ZHOU ; Li ZHANG ; Qin YE ; Li XIN ; Peng DU ; Ren-Bao GAN
Chinese Journal of Biotechnology 2003;19(4):467-470
A recombinant strain of Pichia pastoris with a phenotype of Muts was used to produce angiostatin in a 5-L fermentor. The methanol utilization ability of the present strain was weak, which resulted in extremely low growth rate and angiostatin productivity during the expression phase with methanol as the sole carbon source. To enhance the cell density and angiostatin expression level, mixed-carbon-source of glycerol-methanol was used in the expression phase. The methanol concentration was well controlled at 5 g/L by a methanol sensor and control system, and glycerol was continuously fed into the fermentor to achieve a higher cell density. 120 g/L of cells and 39 mg/L of angiostatin were reached at the end of fermentation which lasted 110 h. The mean specific cell growth rate in the expression phase was 0.01 h(-1), and the mean specific angiostatin productivity was 0.006 mg/(g x h). According to the data obtained in several runs of fermentation in which glycerol was fed at different rates, a higher mean specific angiostatin productivity was reached at the mean specific cell growth rate of 0.012 h(-1). To avoid the repression of angiostatin expression caused by residual glycerol and ethanol accumulation due to overfeeding of glycerol, glycerol addition was controlled to produce continuous oscillations in dissolved oxygen, because the change of dissolved oxygen concentration could deliver the information of available carbon source in the fermentation broth. Controlled glycerol feeding also avoided the problem of oxygen limitation brought by high cell density, and thus decreased the cooling requirement of the fermentor. Cell density reached 150 g/L at the end of fermentation, and angiostatin level reached 108 mg/L after an expression period of 96 h when the mean specific growth rate was maintained at 0.012 h(-1) by using the glycerol feeding strategy to result in the oscillations in dissolved oxygen. The mean specific angiostatin productivity was improved to 0.02 mg/(g x h). The apparent cell yield on glycerol and methanol were respectively 0.69 g/g and 0.93 g/g, higher than those in the fermentation without using the feeding strategy with dissolved oxygen as the indicator of metabolism.
Angiostatins
;
genetics
;
metabolism
;
physiology
;
Biotechnology
;
methods
;
Carbon
;
metabolism
;
Fermentation
;
physiology
;
Glycerol
;
metabolism
;
Methanol
;
metabolism
;
Oxygen
;
metabolism
;
Pichia
;
genetics
;
metabolism
8.Compared D-amino acid oxidase expression in different Pichia pastoris host strains.
Mei-Qing FENG ; Hai HUANG ; Xun-Long SHI ; Zhi-Liang YU ; Zhong-Yi YUAN ; Pei ZHOU
Chinese Journal of Biotechnology 2004;20(4):572-577
To compare the DAAO expression level in different Pichia pastoris host strains, the gene encoding DAAO from Trigonopsis variabilis was cloned into plasmid pPIC3.5k and then transformed into P. pastoris GS115 and KM71 respectively. The positive transformants PDK13 (MutS) and PD27 (Mut+) were obtained by PCR analysis. Their optimal and different expression conditions were investigated. To compare with PD27, PDK13 was determined to poss a slower consumption of methanol, a longer induction time, a lower oxygen request and apparently higher expression of DAAO. The highest expression levels were reached up to 2700, 2500 IU/L in shaking flask and 10140, 8463.5 IU/L in fermentor respectively. The over-expression of DAAO can meet its large demand for production of 7-ACA, alpha-keto acid and L-amino acid. In addition, the phenylpyruvate and L-phenylalanine were obtained by crude DAAO reacting with DL-phenylalanine at 37 degrees C for 3h.
D-Amino-Acid Oxidase
;
genetics
;
Fermentation
;
Methanol
;
metabolism
;
Phenylalanine
;
metabolism
;
Pichia
;
genetics
;
Polymerase Chain Reaction
9.Effects of different methanol feeding strategy on hirudin production in high-density fermentation by recombinant Pichia pastoris.
Xiang-Shan ZHOU ; Wei-Min FAN ; Yuan-Xing ZHANG
Chinese Journal of Biotechnology 2002;18(3):348-351
Four different methanol feeding modes were evaluated in the hirudin production in high-density fermentation by Pichia pastoris. It was difficult to avoid methanol excessive in the broth with the feeding strategy only based on DO level. On the other hand, the fluctuation in methanol concentration was observed with methanol feeding strategy by off-line gas chromatography. However, the stable methanol concentration was perfectly achieved by the on-line monitoring with methanol sensor. The supply of energy was improved by feeding glycerol at a limited rate as well as methanol in the induction phase. Therefore, the high cell dry weight (162 g/L) and high hirudin activity (2.4 x 10(4) ATU/mL or 1.7 g/L) was obtained in the fed-batch fermentation of recombinant Pichia pastoris by methanol-glycerol mixed feeding.
Fermentation
;
Glycerol
;
pharmacology
;
Hirudins
;
biosynthesis
;
Methanol
;
pharmacology
;
Pichia
;
genetics
;
metabolism
;
Recombination, Genetic
10.High-level production of glucose oxidase by recombinant Pichia pastoris using a combined strategy.
Qingxuan MU ; Meirong HU ; Fei CHEN ; Xianzhang JIANG ; Yong TAO ; Jianzhong HUANG
Chinese Journal of Biotechnology 2016;32(7):986-990
To enhance the production of glucose oxidase by recombinant Pichia pastoris, two strategies were developed, which were namely co-feeding of methanol and sorbitol and co-expressing of the protein disulfide isomerase (PDI) and Vitreoscialla hemoglobin (VHb). The volumetric activity reached 456 U/mL by using the strain X33/pPIC9k-GOD, in 5 liter fermentator, with the co-feeding of methanol and sorbitol, it was 0.2 fold higher than that only feeding by methanol. The improved strain was obtained by co-expressing PDI-VHb with GOD. While fermented in a 5 liter fermentator by feeding methanol and sorbitol, the activity of the improved strain reached 716 U/mL with a yield of 7 400 mg/L total soluble protein concentration. These results indicated that heterologous protein expression level can be enhanced by optimizing fermentation condition and co-expression molecular chaperon in Pichia pastoris.
Bioreactors
;
Fermentation
;
Glucose Oxidase
;
biosynthesis
;
Methanol
;
Pichia
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
Sorbitol