1.Advances in biotransformation of methanol into chemicals.
Kang LIU ; Yangyi QIAO ; Shangjie ZHANG ; Feng GUO ; Jiangfeng MA ; Fengxue XIN ; Wenming ZHANG ; Min JIANG
Chinese Journal of Biotechnology 2023;39(6):2430-2448
Methanol has become an attractive substrate for the biomanufacturing industry due to its abundant supply and low cost. The biotransformation of methanol to value-added chemicals using microbial cell factories has the advantages of green process, mild conditions and diversified products. These advantages may expand the product chain based on methanol and alleviate the current problem of biomanufacturing, which is competing with people for food. Elucidating the pathways involving methanol oxidation, formaldehyde assimilation and dissimilation in different natural methylotrophs is essential for subsequent genetic engineering modification, and is more conducive to the construction of novel non-natural methylotrophs. This review discusses the current status of research on methanol metabolic pathways in methylotrophs, and presents recent advances and challenges in natural and synthetic methylotrophs and their applications in methanol bioconversion.
Humans
;
Methanol/metabolism*
;
Metabolic Engineering
;
Metabolic Networks and Pathways
;
Biotransformation
2.Expression, purification and bioactivity analysis of a recombinant fusion protein rHSA-hFGF21 in Pichia pastoris.
Tiantian HUANG ; Jianying QI ; Ganggang YANG ; Xianlong YE
Chinese Journal of Biotechnology 2022;38(9):3419-3432
Human fibroblast growth factor 21 (hFGF21) has become a candidate drug for regulating blood glucose and lipid metabolism. The poor stability and short half-life of hFGF21 resulted in low target tissue availability, which hampers its clinical application. In this study, the hFGF21 was fused with a recombinant human serum albumin (HSA), and the resulted fusion protein rHSA-hFGF21 was expressed in Pichia pastoris. After codon optimization, the recombinant gene fragment rHSA-hFGF21 was inserted into two different vectors (pPIC9k and pPICZαA) and transformed into three different strains (X33, GS115 and SMD1168), respectively. We investigated the rHSA-hFGF21 expression levels in three different strains and screened an engineered strain X33-pPIC9K-rHSA-hFGF21 with the highest expression level. To improve the production efficiency of rHSA-hFGF21, we optimized the shake flask fermentation conditions, such as the OD value, methanol concentration and induction time. After purification by hollow fiber membrane separation, Blue affinity chromatography and Q ion exchange chromatography, the purity of the rHSA-hFGF21 protein obtained was 98.18%. Compared to hFGF21, the biostabilities of rHSA-hFGF21, including their resistance to temperature and trypsinization were significantly enhanced, and its plasma half-life was extended by about 27.6 times. Moreover, the fusion protein rHSA-hFGF21 at medium and high concentration showed a better ability to promote glucose uptake after 24 h of stimulation in vitro. In vivo animal studies showed that rHSA-hFGF21 exhibited a better long-term hypoglycemic effect than hFGF21 in type 2 diabetic mice. Our results demonstrated a small-scale production of rHSA-hFGF21, which is important for large-scale production and clinical application in the future.
Animals
;
Blood Glucose/metabolism*
;
Diabetes Mellitus, Experimental
;
Fibroblast Growth Factors
;
Humans
;
Hypoglycemic Agents/metabolism*
;
Methanol/metabolism*
;
Mice
;
Pichia/metabolism*
;
Recombinant Fusion Proteins
;
Recombinant Proteins/metabolism*
;
Saccharomycetales
;
Serum Albumin/metabolism*
;
Serum Albumin, Human/metabolism*
3.Protein tyrosine phosphatase 1B inhibitory activities of ursane-type triterpenes from Chinese raspberry, fruits of Rubus chingii.
Xiang-Yu ZHANG ; Wei LI ; Jian WANG ; Ning LI ; Mao-Sheng CHENG ; Kazuo KOIKE
Chinese Journal of Natural Medicines (English Ed.) 2019;17(1):15-21
Protein tyrosine phosphatase 1B (PTP1B) has led to an intense interest in developing its inhibitors as anti-diabetes, anti-obesity and anti-cancer agents. The fruits of Rubus chingii (Chinese raspberry) were used as a kind of dietary traditional Chinese medicine. The methanolic extract of R. chingii fruits exhibited significant PTP1B inhibitory activity. Further bioactivity-guided fractionation resulted in the isolation of three PTP1B inhibitory ursane-type triterpenes: ursolic acid (1), 2-oxopomolic acid (2), and 2α, 19α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Kinetics analyses revealed that 1 was a non-competitive PTP1B inhibitor, and 2 and 3 were mixed type PTP1B inhibitors. Compounds 1-3 and structurally related triterpenes (4-8) were further analyzed the structure-activity relationship, and were evaluated the inhibitory selectivity against four homologous protein tyrosine phosphatases (TCPTP, VHR, SHP-1 and SHP-2). Molecular docking simulations were also carried out, and the result indicated that 1, 3-acetoxy-urs-12-ene-28-oic acid (5), and pomolic acid-3β-acetate (6) bound at the allosteric site including α3, α6, and α7 helix of PTP1B.
Enzyme Inhibitors
;
chemistry
;
metabolism
;
Fruit
;
chemistry
;
Humans
;
Kinetics
;
Methanol
;
chemistry
;
Molecular Docking Simulation
;
Molecular Structure
;
Plant Extracts
;
chemistry
;
Protein Binding
;
Protein Tyrosine Phosphatase, Non-Receptor Type 1
;
antagonists & inhibitors
;
metabolism
;
Protein Tyrosine Phosphatases
;
antagonists & inhibitors
;
Rubus
;
chemistry
;
Structure-Activity Relationship
;
Triterpenes
;
chemistry
;
metabolism
4.Transcriptome analysis of Pichia pastoris in response to ethanol stress.
Peng GAO ; Jian DING ; Xu ZHANG ; Yue ZHAO ; Meng ZHANG ; Minjie GAO ; Jianrong WU ; Xiaobei ZHAN
Chinese Journal of Biotechnology 2016;32(5):584-598
Effective expression of pIFN-α in recombinant Pichia pastoris was conducted in a 5 L fermentor. Ethanol accumulation during the late glycerol feeding period inhibited heterologous protein expression. Comparative transcriptome analysis was thus performed to compare the gene transcription profiles of Pichia pastoris KM71H in high and low ethanol concentration environments. The results showed that during the glycerol cultivation stage, 545 genes (265 up-regulated and 280 down-regulated) were differentially expressed with ethanol stress. These genes were mainly involved in protein synthesis, energy metabolism, cell cycle and peroxisome metabolism. During the methanol induction stage, 294 genes (171 up-regulated and 123 down-regulated) were differentially expressed, which were mainly related to methanol metabolism, amino acid metabolism and protein synthesis. Ethanol stress increased protein misfolding and reduced structural integrity of ribosome and mitochondria during cultivation stage, and led to the failure of endoplasmic reticulum stress removal and damaged amino acid metabolism during induction stage in Pichia pastoris.
Amino Acids
;
metabolism
;
Bioreactors
;
Endoplasmic Reticulum Stress
;
Energy Metabolism
;
Ethanol
;
chemistry
;
Gene Expression Profiling
;
Gene Expression Regulation, Fungal
;
Glycerol
;
Methanol
;
Pichia
;
metabolism
;
Protein Biosynthesis
;
drug effects
;
Protein Folding
;
Recombinant Proteins
;
biosynthesis
;
Transcriptome
5.High-level production of glucose oxidase by recombinant Pichia pastoris using a combined strategy.
Qingxuan MU ; Meirong HU ; Fei CHEN ; Xianzhang JIANG ; Yong TAO ; Jianzhong HUANG
Chinese Journal of Biotechnology 2016;32(7):986-990
To enhance the production of glucose oxidase by recombinant Pichia pastoris, two strategies were developed, which were namely co-feeding of methanol and sorbitol and co-expressing of the protein disulfide isomerase (PDI) and Vitreoscialla hemoglobin (VHb). The volumetric activity reached 456 U/mL by using the strain X33/pPIC9k-GOD, in 5 liter fermentator, with the co-feeding of methanol and sorbitol, it was 0.2 fold higher than that only feeding by methanol. The improved strain was obtained by co-expressing PDI-VHb with GOD. While fermented in a 5 liter fermentator by feeding methanol and sorbitol, the activity of the improved strain reached 716 U/mL with a yield of 7 400 mg/L total soluble protein concentration. These results indicated that heterologous protein expression level can be enhanced by optimizing fermentation condition and co-expression molecular chaperon in Pichia pastoris.
Bioreactors
;
Fermentation
;
Glucose Oxidase
;
biosynthesis
;
Methanol
;
Pichia
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
Sorbitol
6.Advances in biomolecular machine: methane monooxygenases.
Jixue LU ; Shizhen WANG ; Baishan FANG
Chinese Journal of Biotechnology 2015;31(7):1015-1023
Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced.
Catalysis
;
Methane
;
metabolism
;
Methanol
;
metabolism
;
Oxygenases
;
metabolism
7.Distribution of Formic Acid after Methanol Intoxication in Rats.
Dong-mei LIU ; Shu ZHOU ; Jie-min CHEN ; Wen-tao XIA
Journal of Forensic Medicine 2015;31(6):450-453
OBJECTIVE:
To investigate concentration and distribution in blood and tissues of formic acid after methanol intoxication in rats.
METHODS:
The Sprague-Dawley rats were divided into groups for control group and 3-day and 7-day intoxication treatment groups. The experimental groups were administered methanol by gavage with the initial dose of 8 mL/kg and followed with 4 mL/kg supplemental dose 24 h later. After 3 days and 7 days later, rats were killed by decapitation. Then samples of cardiac blood, liver, kidney, brain, heart and stomach of each group were collected. Formic acid concentrations were detected by high performance liquid chromatography.
RESULTS:
Formic acid concentrations in tissues were higher than in blood. Compared with 3-day intoxication group, there was an increase formic acid of concentration in brain and stomach in 7-day intoxication group, while a decrease in liver and kidney (P < 0.05).
CONCLUSION
High performance liquid chromatography could be used to accurately detect formic acid. As the metabolite of methanol, formic acid accumulates in rat blood and tissues after intoxication and the concentrations in organs and tissues are obviously higher than in blood.
Animals
;
Brain/metabolism*
;
Chromatography, High Pressure Liquid
;
Formates/blood*
;
Kidney/metabolism*
;
Liver/metabolism*
;
Methanol/poisoning*
;
Rats
;
Rats, Sprague-Dawley
;
Tissue Distribution
8.Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC.
Xiao-Yong RAO ; Shan YIN ; Guo-Song ZHANG ; Xiao-Jian LUO ; Hui JIAN ; Yu-Lin FENG ; Shi-Lin YANG
China Journal of Chinese Materia Medica 2014;39(9):1593-1596
OBJECTIVETo determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients.
METHODCombining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis.
RESULTn-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile.
CONCLUSIONUnder gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.
1-Octanol ; chemistry ; Acetonitriles ; chemistry ; Biological Availability ; Chromatography, High Pressure Liquid ; methods ; Drugs, Chinese Herbal ; chemistry ; pharmacokinetics ; Gastrointestinal Tract ; metabolism ; Humans ; Hydrogen-Ion Concentration ; Intestinal Absorption ; Kinetics ; Methanol ; chemistry ; Pulsatilla ; chemistry ; Solubility ; Solvents ; chemistry ; Water ; chemistry
9.Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet.
Nutrition Research and Practice 2013;7(6):453-459
The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV- and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia.
Acetic Acid*
;
Adipocytes
;
Animals
;
Blood Glucose
;
Cholesterol
;
Diet
;
Diet, High-Fat*
;
Epididymis
;
Hyperlipidemias
;
Lipid Metabolism
;
Lipoproteins
;
Male
;
Metabolic Diseases
;
Methanol
;
Mice*
;
Obesity
;
Soybeans
;
Triglycerides
10.Effects of mixed carbon sources on glucose oxidase production by recombinant Pichia pastoris.
Yina SHEN ; Lei GU ; Juan ZHANG ; Jian CHEN ; Guocheng DU
Chinese Journal of Biotechnology 2013;29(7):927-936
Glucose oxidase (GOD) is an important industrial enzyme with many potential applications. In order to increase the production and productivity of GOD by recombinant Pichia pastoris GS115, we investigated the feeding strategies of mixed carbon sources during induction phase, based on results of the optimization of initial cell and methanol concentration on GOD production. The optimal initial cell and methanol concentration were 100 g/L and 18 g/L. During induction phase, the mixed-carbon-sources strategies showed that glycerol, sorbitol or mannitol co-feeding with methanol could enhance GOD production. With mannitol co-feeding (20:1(W/W)), the maximum GOD production and maximum GOD productivity reached 711.3 U/mL and 4.60 U/(mL x h) after an induction period of 156 h. Compared to the control, the enhancements of GOD production and productivity were 66.3% and 67.9%, respectively. Meanwhile, we found an appropriate mannitol co-feeding strategy that would not inhibit the expression of promote. The activity of alcohol oxidase was 8.8 U/g, which was enhanced by 69.2% compared to the control (5.2 U/g). We can use the same optimization process to improve the production of other proteins from recombinant Pichia pastoris by changing the fermentation parameters.
Carbon
;
metabolism
;
Fermentation
;
Glucose Oxidase
;
biosynthesis
;
Glycerol
;
metabolism
;
Industrial Microbiology
;
Mannitol
;
metabolism
;
Methanol
;
metabolism
;
Pichia
;
metabolism
;
Sorbitol
;
metabolism

Result Analysis
Print
Save
E-mail