2.Relationship between blood heavy metals and female stress urinary incontinence from NHANES 2013-2018.
Environmental Health and Preventive Medicine 2025;30():45-45
BACKGROUND:
Research has demonstrated that heavy metals and cholesterol are associated with stress urinary incontinence (SUI) in women and that heavy metal exposure can cause dyslipidemia in humans. However, the potential mediating role of cholesterol in the relationship between heavy metals and female SUI remains unexplored.
METHODS:
The study utilized data from the National Health and Nutrition Examination Survey database from 2013-2018. Blood lead (Pb), cadmium (Cd), total mercury (Hg), manganese (Mn), selenium (Se), and methyl mercury (MeHg) were included in the study. The single and combined effects of the six metals exposure on SUI were examined using logistic analysis, restricted cubic spline (RCS) curves, weighted quantile sum (WQS) regression, and bayesian kernel machine regression (BKMR). The mediating effects of total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were investigated through mediation analysis.
RESULTS:
The study included 2241 females, with 42.66% experiencing SUI. Initial analysis of six heavy metals revealed the associations between MeHg, Pb, Cd, total Hg, and SUI (all P < 0.05). WQS regression identified that Cd, Se, and Pb were major contributors to the mixed effect causing SUI. BKMR results indicated a positive mixed effect between six heavy metals and SUI. TC partially mediated the relationship of Pb, MeHg, and total Hg with SUI, and LDL-C partially mediated the association of Pb with SUI (all P for mediation < 0.05).
CONCLUSIONS
Blood heavy metal concentrations influence the development of female SUI, with blood cholesterol mediating the association between different heavy metals and SUI.
Humans
;
Female
;
Metals, Heavy/blood*
;
Nutrition Surveys
;
Middle Aged
;
Adult
;
United States/epidemiology*
;
Urinary Incontinence, Stress/chemically induced*
;
Environmental Pollutants/blood*
;
Aged
;
Cholesterol/blood*
;
Environmental Exposure
3.Acinetobacter sp. ME1: a multifunctional bacterium for phytoremediation utilizing melanin production, heavy metal tolerance, and plant growth promotion.
Journal of Zhejiang University. Science. B 2025;26(11):1103-1120
Microorganisms inhabiting soils contaminated with heavy metals produce melanin, a dark brown pigment, as a survival strategy. In this study, a melanin-producing bacterium, Acinetobacter sp. ME1, with heavy metal tolerance and plant growth-promoting traits, was isolated from abandoned mine soil. Strain ME1 exhibited growth at concentrations of Zn up to 250 mg/L, Cd and Pb up to 100 mg/L, and Cr up to 50 mg/L. It had the ability to produce the plant hormone indole-3-acetic acid and siderophores along with 1-aminocyclopropane-1-carboxylic acid deaminase and protease activities. Additionally, it showed antioxidant activity, including catalase and 2,2-diphenyl-1-picryhydrazyl (DPPH) scavenging activities. The optimal conditions for melanin production by ME1 were a pH of 7 and a temperature of 35 ℃. At 1000 mg/L, ME1-extracted melanin exhibited DPPH radical scavenging activity of (25.040±0.007)%, a sun protection factor of 15.200±0.260, and 19.6% antibacterial activity against the plant pathogen Xanthomonas campestris. Furthermore, its adsorption capacity was (0.235±0.073) mg/g melanin for Zn and (0.277±0.008) mg/g melanin for Ni. In plants of Brassica chinensis grown under conditions of hydroponic cultivation with single heavy metal contamination of Cd, Zn, Pb, or Cr, the removal efficiency of each heavy metal was improved by 0.1‒1.8 times after 3 d following inoculation with the strain ME1 compared to the plants grown under the same conditions without inoculation. In addition, ME1 inoculation improved the removal efficiency of each heavy metal by 0.1‒1.0 times under multiple heavy metal contamination conditions. These findings suggest that Acinetobacter sp. ME1 could be used to enhance phytoremediation efficiency in heavy metal-contaminated soils. Moreover, the melanin it produces also holds promise in cosmetics, household products, and medical applications due to its photoprotective, antioxidant, and antimicrobial properties.
Acinetobacter/metabolism*
;
Biodegradation, Environmental
;
Metals, Heavy/metabolism*
;
Melanins/metabolism*
;
Soil Microbiology
;
Antioxidants/metabolism*
;
Plant Development
;
Soil Pollutants/metabolism*
;
Indoleacetic Acids/metabolism*
4.Research progress in the adsorption of heavy metal ions from wastewater by modified biochar.
Jing HONG ; Yongyong DAI ; Qijun NIE ; Zhiqiang LIAO ; Liangcai PENG ; Dan SUN
Chinese Journal of Biotechnology 2024;40(12):4467-4479
The rapid development of modern industries is accompanied with the aggravating water heavy metal pollution, which poses a potential threat to the aquatic environment and the health of local populations. As an efficient and economical adsorbent, biochar demonstrates the adsorption capacity for heavy metal ions and its adsorption capacity is significantly enhanced after modification. Therefore, biochar can effectively mitigate environmental pollution. By reviewing the existing studies, we summarize the modification methods of biochar, compare the advantages and disadvantages of physical, biological, and chemical modification methods, analyze the effects of modification on the adsorption capacity of biochar for heavy metal ions, and expound the modification mechanism of biochar. On this basis, this article puts forward the future research directions of the application of biochar in treating coexisting pollutants, aiming to provide a reference for the application of biochar in the purification of heavy metal-containing wastewater.
Charcoal/chemistry*
;
Metals, Heavy
;
Adsorption
;
Wastewater/chemistry*
;
Water Pollutants, Chemical/chemistry*
;
Water Purification/methods*
;
Heavy Ions
;
Waste Disposal, Fluid/methods*
5.Phenylpropanoid pathway in plants and its role in response to heavy metal stress: a review.
Wenjia GE ; Jianpan XIN ; Runan TIAN
Chinese Journal of Biotechnology 2023;39(2):425-445
Phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plants. It directly or indirectly plays an antioxidant role in plant resistance to heavy metal stress, and can improve the absorption and stress tolerance of plants to heavy metal ions. In this paper, the core reactions and key enzymes of the phenylpropanoid metabolic pathway were summarized, and the biosynthetic processes of key metabolites such as lignin, flavonoids and proanthocyanidins and relevant mechanisms were analyzed. Based on this, the mechanisms of key products of phenylpropanoid metabolic pathway in response to heavy metal stress were discussed. The perspectives on the involvement of phenylpropanoid metabolism in plant defense against heavy metal stress provides a theoretical basis for improving the phytoremediation efficiency of heavy metal polluted environment.
Plants/metabolism*
;
Metals, Heavy/metabolism*
;
Flavonoids/metabolism*
;
Biodegradation, Environmental
;
Antioxidants
6.The association between heavy metal exposure and erectile dysfunction in the United States.
Wei WANG ; Li-Yuan XIANG ; Yu-Cheng MA ; Jia-Wei CHEN ; Liao PENG ; Xiao-Shuai GAO ; Fu-Xun ZHANG ; Yang XIONG ; Feng QIN ; Jiu-Hong YUAN
Asian Journal of Andrology 2023;25(2):271-276
Literature regarding the impacts of heavy metal exposure on erectile dysfunction (ED) is scarce. We aimed to evaluate the correlation between 10 urinary metals and ED in a large, nationally representative adult male sample. The dataset was extracted from the National Health and Nutrition Examination Survey (NHANES) during the period of 2001-2002 and 2003-2004. Weighted proportions and multivariable logistic regression analysis adjusted for confounding variables were utilized to determine the relationship between metal exposure and ED. Weighted quantile sum (WQS) regression was utilized to evaluate the impact of a mixture of urinary metals on ED. A total of 1328 participants were included in our study. In multivariable logistic regression analysis, cobalt (Co) and antimony (Sb) were positively associated with ED (odds ratio [OR]: 1.36, 95% confidence interval [CI]: 1.10-1.73, P = 0.020; and OR: 1.41, 95% CI: 1.12-1.77, P = 0.018, respectively) after full adjustment. Men in tertile 4 for Co (OR: 1.49, 95% CI: 1.02-2.41, P for trend = 0.012) and Sb (OR: 1.53, 95% CI: 1.08-2.40, P for trend = 0.041) had significantly higher odds of ED than those in tertile 1. Furthermore, the WQS index was significantly linked with increased odds of ED after full adjustment (OR: 1.31, 95% CI: 1.04-1.72, P < 0.05). Our study expanded on previous literature indicating the possible role of heavy metal exposure in the etiology of ED. The evaluation of heavy metal exposure should be included in the risk assessment of ED.
Adult
;
Humans
;
Male
;
United States
;
Erectile Dysfunction/etiology*
;
Nutrition Surveys
;
Metals, Heavy
;
Risk Assessment
7.A case of skin ulcers secondary to extensive burns caused by flame and heavy metal-containing hydrothermal fluids.
Hong Fei DONG ; Xi HUANG ; Ji You WU ; Xian Hui LI
Chinese Journal of Burns 2023;39(1):71-74
On May 13, 2020, a 56-year-old man with extensive burns caused by flames and heavy metal-containing hydrothermal fluids was admitted to the General Hospital of Western Theater Command. After being admitted to the hospital, most of the burn wounds healed after treatments such as debridement, expansion, skin grafting, anti-shock, anti-infection, fluid replacement, and wound dressing change, etc. However, in the middle and late stages of treatment, the patient's burn wounds gradually showed repeated skin ulceration and inflammation. After excluding the cause of physical, bacterial infection and others, IgG4-related skin diseases was finally diagnosed by histopathological examination of tissue biopsy and concentration measurement of IgG4 in interstitial fluid, and the condition was improved after hormone treatment. This suggests that extensive burns may lead to the occurrence of autoimmune skin diseases. For the diagnosis of such diseases, it is necessary to combine clinical manifestations, serological examinations, and histopathological biopsy, etc. to avoid diagnostic pitfalls and draw correct conclusions.
Male
;
Humans
;
Middle Aged
;
Wound Healing
;
Treatment Outcome
;
Burns/surgery*
;
Skin Transplantation
;
Skin Ulcer
;
Metals, Heavy
8.Construction and performance analysis of a microbial electrochemical sensor for monitoring heavy metals in water environment.
Xiaoxiao LIU ; Fei YE ; Chuanchao WEI ; Mingjie ZHAO ; Yongtian LI
Chinese Journal of Biotechnology 2022;38(5):1903-1914
A microbial fuel cell (MFC)-based microbial electrochemical sensor was developed for real-time on-line monitoring of heavy metals in water environment. The microbial electrochemical sensor was constructed with staggered flow distribution method to optimize the parameters such as external resistance value and external circulation rate. The inhibition of concentration of simulated heavy metal wastewater on voltage under optimal parameters was analyzed. The results showed that the best performance of MFC electrochemical sensor was achieved when the external resistance value was 130 Ω and the external circulation rate was 1.0 mL/min. In this case, the microbial electrochemical sensors were responsive to 1-10 mg/L Cu2+, 0.25-1.25 mg/L Cd2+, 0.25-1.25 mg/L Cr6+ and 0.25-1.00 mg/L Hg2+ within 60 minutes. The maximum rejection rates of the output voltage were 92.95%, 73.11%, 82.76% and 75.80%, respectively, and the linear correlation coefficients were all greater than 0.95. In addition, the microbial electrochemical sensor showed a good biological reproducibility. The good performance for detecting heavy metals by the newly developed microbial electrochemical sensor may facilitate the real-time on-line monitoring of heavy metals in water environment.
Bioelectric Energy Sources
;
Electrodes
;
Metals, Heavy/analysis*
;
Reproducibility of Results
;
Waste Water
;
Water
9.Analysis of heavy metal pollution in Lonicerae Japonicae Flos and its health risk assessment.
Tong BU ; Xiao YU ; Xin-Rui ZHANG ; Jia LI ; Ling-Na WANG ; Fang ZHANG ; Yong-Qing ZHANG
China Journal of Chinese Materia Medica 2022;47(3):643-650
In this study, the content of five heavy metals(Pb, Cd, As, Hg, and Cu) in 59 batches of Lonicerae Japonicae Flos(LJF) medicinal materials and pieces were determined by inductively coupled plasma mass spectrometry(ICP-MS). The health risk assessment was processed using the maximum estimated daily intake(EDI), target hazard quotients(THQ), and carcinogenic risks(CR) assessment models. With reference to the limit standard for heavy metal content in LJF specified in 2020 edition of Chinese Pharmacopoeia, five batches produced in Hebei were found to contain excessive Pb, and the remaining 54 batches met the specifications, with the unqualified rate of 8.47%. Comparative analysis of heavy metal content in LJF samples from three different producing areas, namely Shandong, Henan, and Hebei showed that the levels of Pb, As, and Hg in LJF from Hebei were significantly higher than those from Henan and Shandong. The samples produced in Shandong contained the highest content of Cd. The samples from Hebei contained the highest content of Cu while those from Shandong had the lowest content of Cu. As demonstrated by health risk assessment based on the EDI, THQ and CR models, these 59 batches of LJF samples did not cause significant health hazards for the exposed population, and there was no potential non-carcinogenic or carcinogenic risk. In conclusion, a few of LJF samples contained excessive heavy metals, so some measures, including controlling production environment, cultivating management mode, and optimizing processing methods, should be taken for ensuring the medication safety of LJF.
Drugs, Chinese Herbal
;
Environmental Pollution/analysis*
;
Mercury/toxicity*
;
Metals, Heavy/toxicity*
;
Risk Assessment
10.Sagittaria sagittifolia polysaccharides regulates Nrf2/HO-1 to relieve liver injury caused by multiple heavy metals in vivo and in vitro.
Hong-Shuang LIU ; Ya-Lan LI ; Jing-Wei KONG ; Man-Yu ZHOU ; Rui-Juan DONG ; Dong-Yu GE ; Jia-Jing LIU ; Gui-Ying PENG ; Yan LIAO
China Journal of Chinese Materia Medica 2022;47(7):1913-1920
This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.
Animals
;
Heme Oxygenase-1/metabolism*
;
Liver
;
Male
;
Metals, Heavy/metabolism*
;
Mice
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Polysaccharides/pharmacology*
;
RNA, Messenger/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Sagittaria/metabolism*


Result Analysis
Print
Save
E-mail