1.Advances in anti-adversity of biological composites based on metal-organic frameworks.
Yujie ZHOU ; Junning WANG ; Fang LÜ ; Yanhong ZHAO ; Yu LU
Chinese Journal of Biotechnology 2021;37(11):4015-4023
Metal-organic frameworks (MOFs) are formed by self-assembly of metal ions or clusters with organic ligands, and are widely used in the fields of catalysis, sensing, energy and biomedicine. Recently, biological composites based on MOFs have attracted increasing attention. MOFs can be used as a platform for encapsulating bioactive substances due to the advantages such as large pore capacity, large specific surface area and diverse structure composition. These features can protect bioactive substances from adverse conditions, e.g. high temperature, high pressure, and organic solvents, thus improving the anti-adversity of bioactive substances. This review summarizes the advances of using MOFs as protective coatings to improve the anti-adversity of different bioactive substances, and introduces the synthesis strategy of MOFs-based biological composites, with the aim to promote the practical application of MOFs-based biological composites.
Catalysis
;
Ions
;
Metal-Organic Frameworks
;
Metals
3.Advances in enzyme immobilization based on hierarchical porous metal-organic frameworks.
Yawei CHEN ; Huijie ZHENG ; Yiting CAO ; Jiajia YANG ; Huiyun ZHOU
Chinese Journal of Biotechnology 2023;39(3):930-941
As an excellent hosting matrices for enzyme immobilization, metal-organic framework (MOFs) provides superior physical and chemical protection for biocatalytic reactions. In recent years, the hierarchical porous metal-organic frameworks (HP-MOFs) have shown great potential in enzyme immobilization due to their flexible structural advantages. To date, a variety of HP-MOFs with intrinsic or defective porous have been developed for the immobilization of enzymes. The catalytic activity, stability and reusability of enzyme@HP-MOFs composites are significantly enhanced. This review systematically summarized the strategies for developing enzyme@HP-MOFs composites. In addition, the latest applications of enzyme@HP-MOFs composites in catalytic synthesis, biosensing and biomedicine were described. Moreover, the challenges and opportunities in this field were discussed and envisioned.
Metal-Organic Frameworks/chemistry*
;
Porosity
;
Enzymes, Immobilized/chemistry*
;
Biocatalysis
;
Catalysis
4.Development of enzyme immobilization systems for CO2 bioconversion: advances and challenges.
Shaoyu SONG ; Xiuling JI ; Likun LUAN ; Ying ZHANG ; Yuhong HUANG
Chinese Journal of Biotechnology 2023;39(8):3143-3168
Enzyme-catalyzed CO2 reduction to value-added commodities is important for alleviating the global environmental issues and energy crises due to high selectivity and mild conditions. Owing to high energy density, formic acid or methanol produced from CO2 using formate dehydrogenase (FDH) or multi-enzyme cascades are promising target chemicals for CO2 utilization. However, the low activity, poor stability and low reusability of key enzymes involved in such process hampered its large-scale application. Enzyme immobilization provides an effective solution to these problems and significant progress have been made in immobilization carriers. Moreover, integration of enzyme immobilization with other catalysis techniques have been explored extensively. This review summarized the recent advances in the immobilization of enzymes using membranes, inorganic materials, metal-organic frameworks, covalent organic frameworks and other carriers, and illustrated the characteristics and advantages of different immobilization materials and immobilization methods. The synergistic effects and applications of immobilized enzymes and electrocatalytic or photocatalytic coupling reaction systems for CO2 reduction were further summarized. Finally, the current challenges of enzyme immobilization technology and coupling reaction systems were pointed out and their development prospects were presented.
Enzymes, Immobilized
;
Carbon Dioxide
;
Catalysis
;
Formate Dehydrogenases
;
Metal-Organic Frameworks
5.Synthesis of (S)-4-fluorophenylglycine by using immobilized amidase based on metal-organic framework.
Chaoping LIN ; Jiangtao TANG ; Renchao ZHENG ; Yuguo ZHENG
Chinese Journal of Biotechnology 2021;37(8):2936-2946
A stable Zr-based metal-organic framework (MOF, UiO-66-NH2) synthesized via micro-water solvothermal method was used to immobilize amidase by using the glutaraldehyde crosslinking method. The effect of immoblization conditions on enzyme immoblization efficiency was studied. An activity recovery rate of 86.4% and an enzyme loading of 115.3 mg/g were achieved under the optimal conditions: glutaraldehyde concentration of 1.0%, cross-linking time of 180 min, and the weight ratio of MOF to enzyme of 8:1. The optimal temperature and optimal pH of the immobilized amidase were determined to be 40 °C and 9.0, respectively, and the Km, Vmax and kcat of the immoblized amidase were 58.32 mmol/L, 16.23 μmol/(min·mg), and 1 670 s⁻¹, respectively. The immobilized enzyme was used for (S)-4-fluorophenylglycine synthesis and the optimal reaction conditions were 300 mmol/L of N-phenylacetyl-4-fluorophenylglycine, 10 g/L of immobilized enzyme loading, and reacting for 180 min at pH 9.0 and 40 °C. A conversion rate of 49.9% was achieved under the optimal conditions, and the conversion rate can be increased to 99.9% under the conditions of enantiomeric excess. The immobilized enzyme can be repeatedly used, 95.8% of its original activity can be retained after 20 cycles.
Amidohydrolases
;
Enzyme Stability
;
Enzymes, Immobilized/metabolism*
;
Glycine/analogs & derivatives*
;
Hydrogen-Ion Concentration
;
Metal-Organic Frameworks
;
Temperature
6.Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants.
Peng LIU ; Bo FAN ; Lei ZOU ; Lijun LÜ ; Qiuming GAO
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1300-1313
OBJECTIVE:
To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research.
METHODS:
The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances.
RESULTS:
At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity.
CONCLUSION
The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.
Anti-Bacterial Agents/pharmacology*
;
Coated Materials, Biocompatible/chemistry*
;
Metal-Organic Frameworks/pharmacology*
;
Osteogenesis
;
Surface Properties
;
Titanium/pharmacology*
;
Prostheses and Implants
7.Facile Synthesis of the Magnetic Metal Organic Framework Fe3O4@UiO-66-NH2 for Separation of Strontium.
Liang Liang YIN ; Xiang Yin KONG ; Yao ZHANG ; Yan Qin JI
Biomedical and Environmental Sciences 2018;31(6):483-488
A magnetic metal organic framework (MMOF) was synthesized and used to separate Sr2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr2+ in aqueous solution indicated that the adsorption of Sr2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr2+ conformed to the Freundlich isotherm model (R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide 90Sr.
Adsorption
;
Ferrosoferric Oxide
;
chemistry
;
Hydrogen-Ion Concentration
;
Metal-Organic Frameworks
;
chemical synthesis
;
chemistry
;
Models, Theoretical
;
Nanoparticles
;
chemistry
;
Strontium
;
analysis
;
Surface Properties
;
Water Pollutants, Radioactive
;
analysis
;
Water Purification
;
methods