1.Tolerance engineering regulates stress resistance of microbial cell factory.
Li ZHANG ; Jian GAO ; Changqing LIU ; Lina DENG
Chinese Journal of Biotechnology 2022;38(4):1373-1389
The production efficiency of microbial cell factory is determined by the growth performance, product synthetic capacity, and stress resistance of the strain. Strengthening the stress resistance is the key point to improve the production efficiency of microbial cell factory. Tolerance engineering is based on the response mechanism of microbial cell factory to resist stress. Specifically, it consolidates the cell wall-cell membrane barrier to enhance the defense against stress, accelerates the stress response to improve the damage repair, and creates tolerance evolutionary tools to screen industrial microorganisms with enhanced robustness. We summarize the regulation strategies and forecast the prospects of tolerance engineering, which plays an important role in the microbial cell factories for sustainable production of natural products and bulk chemicals.
Cell Membrane
;
Metabolic Engineering
2.Advances in metabolic engineering of filamentous fungi.
Jingen LI ; Qian LIU ; Defei LIU ; Min WU ; Chaoguang TIAN
Chinese Journal of Biotechnology 2021;37(5):1637-1658
Filamentous fungi are important industrial microorganisms that play important roles in the production of bio-based products such as organic acids, proteins and secondary metabolites. The development of metabolic engineering and its enabling techniques have greatly promoted the design, construction and application of filamentous fungal cell factories. This article systematically reviews the development of filamentous fungal cell factories constructed through metabolic engineering, and discusses the challenges and future perspectives for systems metabolic engineering of filamentous fungi.
Fungi/genetics*
;
Metabolic Engineering
3.Preface for special issue on chemical bioproduction.
Chinese Journal of Biotechnology 2023;39(6):2101-2107
Engineering efficient enzymes or microbial cell factories should help to establish green bio-manufacturing process for chemical overproduction. The rapid advances and development in synthetic biology, systems biology and enzymatic engineering accerleate the establishing feasbile bioprocess for chemical biosynthesis, including expanding the chemical kingdom and improving the productivity. To consolidate the latest advances in chemical biosynthesis and promote green bio-manufaturing, we organized a special issue on chemical bioproduction that including review or original research papers about enzymatic biosynthesis, cell factory, one-carbon based biorefinery and feasible strategies. These papers comprehensively discussed the latest advaces, the challenges as well as the possible solutions in chemical biomanufacturing.
Synthetic Biology
;
Carbon
;
Metabolic Engineering
4.Development of morphology engineering for production of bio-based chemicals.
Chinese Journal of Biotechnology 2021;37(7):2211-2222
Synthetic biology and metabolic engineering have been widely used to construct microbial cell factories for efficient production of bio-based chemicals, which mainly focus on the modification and regulation of metabolic pathways. The characteristics of microorganisms themselves, e.g. morphology, have rarely been taken into consideration in the biotechnological production processes. Morphology engineering aims to control cell shapes and cell division patterns by manipulating the genes related to cell morphology, providing a new strategy for developing efficient microbial cell factories. This review summarized the proteins related to cell morphology, followed by illustrating a few examples of using morphology engineering strategies for improving production of bio-based chemicals. This includes increasing intracellular product accumulation by regulating cell size, enhancing extracellular secretion of target products by improving cell permeability, reducing production cost by achieving high cell density, and improving product performance by controlling the degree of product hydrolysis. Finally, challenges and perspectives for the development of morphology engineering were discussed.
Biotechnology
;
Metabolic Engineering
;
Metabolic Networks and Pathways
;
Synthetic Biology
5.Development of metabolic models with multiple constraints: a review.
Xue YANG ; Peiji ZHANG ; Zhitao MAO ; Xin ZHAO ; Ruoyu WANG ; Jingyi CAI ; Zhiwen WANG ; Hongwu MA
Chinese Journal of Biotechnology 2022;38(2):531-545
Constraint-based genome-scale metabolic network models (genome-scale metabolic models, GEMs) have been widely used to predict metabolic phenotypes. In addition to stoichiometric constraints, other constraints such as enzyme availability and thermodynamic feasibility may also limit the cellular phenotype solution space. Recently, extended GEM models considering either enzymatic or thermodynamic constraints have been developed to improve model prediction accuracy. This review summarizes the recent progresses on metabolic models with multiple constraints (MCGEMs). We presented the construction methods and various applications of MCGEMs including the simulation of gene knockout, prediction of biologically feasible pathways and identification of bottleneck steps. By integrating multiple constraints in a consistent modeling framework, MCGEMs can predict the metabolic bottlenecks and key controlling and modification targets for pathway optimization more precisely, and thus may provide more reliable design results to guide metabolic engineering of industrially important microorganisms.
Genome
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
;
Models, Biological
;
Thermodynamics
6.Research progress on synthetic scaffold in metabolic engineering - a review.
Xue YIN ; Chen LIANG ; Yue FENG ; He ZHANG ; Yu WANG ; Yuhua LI
Chinese Journal of Biotechnology 2019;35(3):363-374
Metabolic engineering is a powerful tool to increase many valuable metabolites through enhancing pathways or introducing exogenous pathways from other organisms. As the complexity of the targeted structure increases, many problems arise when the host suffers from flux imbalance and some toxic effects. An emerging approach to solve these problems is the use of synthetic scaffolds to co-localize key enzymes and metabolites of the synthetic pathways, enhance the metabolic flux and limit the interaction between intermediate products in the host cell. Although many scaffolds made of proteins and nucleic acids have been explored and applied to a variety of research to the heterogeneous synthesis of multiple metabolites, success is rather limited. The precise assembly of synthetic scaffolds remains a difficult task. In this review, we summarized the application of synthetic scaffolds in metabolic engineering, and outlined the main principle of scaffold designs, then highlighted the current challenges in their application.
Metabolic Engineering
;
Metabolic Networks and Pathways
;
Proteins
;
Synthetic Biology
7.Metabolic regulation in constructing microbial cell factories.
Yang LIU ; Qingxuan MU ; Ya'nan SHI ; Bo YU
Chinese Journal of Biotechnology 2021;37(5):1541-1563
The regulation of the expression of genes involved in metabolic pathways, termed as metabolic regulation, is vital to construct efficient microbial cell factories. With the continuous breakthroughs in synthetic biology, the mining and artificial design of high-quality regulatory elements have substantially improved our ability to modify and regulate cellular metabolic networks and its activities. The research on metabolic regulation has also evolved from the static regulation of single genes to the intelligent and precise dynamic regulation at the systems level. This review briefly summarizes the advances of metabolic regulation technologies in the past 30 years.
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
;
Synthetic Biology
8.Modular engineering of Escherichia coli for high-level production of l-tryptophan.
Shuang DING ; Xiulai CHEN ; Cong GAO ; Wei SONG ; Jing WU ; Wanqing WEI ; Jia LIU ; Liming LIU
Chinese Journal of Biotechnology 2023;39(6):2359-2374
As an essential amino acid, l-tryptophan is widely used in food, feed and medicine sectors. Nowadays, microbial l-tryptophan production suffers from low productivity and yield. Here we construct a chassis E. coli TRP3 producing 11.80 g/L l-tryptophan, which was generated by knocking out the l-tryptophan operon repressor protein (trpR) and the l-tryptophan attenuator (trpL), and introducing the feedback-resistant mutant aroGfbr. On this basis, the l-tryptophan biosynthesis pathway was divided into three modules, including the central metabolic pathway module, the shikimic acid pathway to chorismate module and the chorismate to tryptophan module. Then we used promoter engineering approach to balance the three modules and obtained an engineered E. coli TRP9. After fed-batch cultures in a 5 L fermentor, tryptophan titer reached to 36.08 g/L, with a yield of 18.55%, which reached 81.7% of the maximum theoretical yield. The tryptophan producing strain with high yield laid a good foundation for large-scale production of tryptophan.
Escherichia coli/metabolism*
;
Tryptophan
;
Metabolic Engineering
;
Bioreactors
;
Metabolic Networks and Pathways
9.Advances in biotransformation of methanol into chemicals.
Kang LIU ; Yangyi QIAO ; Shangjie ZHANG ; Feng GUO ; Jiangfeng MA ; Fengxue XIN ; Wenming ZHANG ; Min JIANG
Chinese Journal of Biotechnology 2023;39(6):2430-2448
Methanol has become an attractive substrate for the biomanufacturing industry due to its abundant supply and low cost. The biotransformation of methanol to value-added chemicals using microbial cell factories has the advantages of green process, mild conditions and diversified products. These advantages may expand the product chain based on methanol and alleviate the current problem of biomanufacturing, which is competing with people for food. Elucidating the pathways involving methanol oxidation, formaldehyde assimilation and dissimilation in different natural methylotrophs is essential for subsequent genetic engineering modification, and is more conducive to the construction of novel non-natural methylotrophs. This review discusses the current status of research on methanol metabolic pathways in methylotrophs, and presents recent advances and challenges in natural and synthetic methylotrophs and their applications in methanol bioconversion.
Humans
;
Methanol/metabolism*
;
Metabolic Engineering
;
Metabolic Networks and Pathways
;
Biotransformation
10.Progress in inverse metabolic engineering.
Guiying LI ; Xinbo ZHANG ; Zhiwen WANG ; Ying SHI ; Tao CHEN ; Xueming ZHAO
Chinese Journal of Biotechnology 2014;30(8):1151-1163
In the last few years, high-throughput (or 'next-generation') sequencing technologies have delivered a step change in our ability to sequence genomes, whether human or bacterial. Further comparative genome analysis enables us to reveal detailed knowledge of genetics or physiology of industrial important strains obtained in laboratory, to analyze genotype-phenotype correlations of mutants with improved performance. Based on identified key mutations or mutation combinations, Inverse Metabolic Engineering (IME) can be performed by using accurate genetic modification system. Recently, IME has been successfully used for strain improvement and has become a research hotspot, including improving substrate utilization, engineering the robustness of industrial microbes and enhancing production of bio-based products. Here, we describe recent advances in research methods of IME, with an emphasis on characterization of genotype-phenotype and the latest advances and application of IME. Possible directions and challenges for further development of IME are also discussed.
Industrial Microbiology
;
trends
;
Metabolic Engineering
;
trends
;
Mutation