1.Research progress of the regulatory role of autophagy in metabolic liver diseases.
Yu Xian LI ; Feng REN ; Yu CHEN
Chinese Journal of Hepatology 2023;31(1):105-108
Autophagy is one of several hepatic metabolic processes in which starved cells are supplied with glucose, free fatty acids, and amino acids to produce energy and synthesize new macromolecules. Moreover, it regulates the quantity and quality of mitochondria and other organelles. As the liver is a vital metabolic organ, specific forms of autophagy are necessary for maintaining liver homeostasis. Protein, fat, and sugar are the three primary nutrients that can be altered by different metabolic liver diseases. Drugs that have an effect on autophagy can either promote or inhibit autophagy, and as a result, it can either increase or inhibit the three major nutritional metabolisms that are affected by liver disease. Thus, this opens up a novel therapeutic option for liver disease.
Humans
;
Liver/metabolism*
;
Liver Diseases
;
Autophagy
;
Metabolic Diseases
;
Mitochondria
2.Promotion effect of FGF23 on osteopenia in congenital scoliosis through FGFr3/TNAP/OPN pathway.
Hongqi ZHANG ; Gang XIANG ; Jiong LI ; Sihan HE ; Yunjia WANG ; Ang DENG ; Yuxiang WANG ; Chaofeng GUO
Chinese Medical Journal 2023;136(12):1468-1477
BACKGROUND:
Congenital scoliosis (CS) is a complex spinal malformation of unknown etiology with abnormal bone metabolism. Fibroblast growth factor 23 (FGF23), secreted by osteoblasts and osteocytes, can inhibit bone formation and mineralization. This research aims to investigate the relationship between CS and FGF23.
METHODS:
We collected peripheral blood from two pairs of identical twins for methylation sequencing of the target region. FGF23 mRNA levels in the peripheral blood of CS patients and age-matched controls were measured. Receiver operator characteristic (ROC) curve analyses were conducted to evaluate the specificity and sensitivity of FGF23. The expression levels of FGF23 and its downstream factors fibroblast growth factor receptor 3 (FGFr3)/tissue non-specific alkaline phosphatase (TNAP)/osteopontin (OPN) in primary osteoblasts from CS patients (CS-Ob) and controls (CT-Ob) were detected. In addition, the osteogenic abilities of FGF23-knockdown or FGF23-overexpressing Ob were examined.
RESULTS:
DNA methylation of the FGF23 gene in CS patients was decreased compared to that of their identical twins, accompanied by increased mRNA levels. CS patients had increased peripheral blood FGF23 mRNA levels and decreased computed tomography (CT) values compared with controls. The FGF23 mRNA levels were negatively correlated with the CT value of the spine, and ROCs of FGF23 mRNA levels showed high sensitivity and specificity for CS. Additionally, significantly increased levels of FGF23, FGFr3, OPN, impaired osteogenic mineralization and lower TNAP levels were observed in CS-Ob. Moreover, FGF23 overexpression in CT-Ob increased FGFr3 and OPN levels and decreased TNAP levels, while FGF23 knockdown induced downregulation of FGFr3 and OPN but upregulation of TNAP in CS-Ob. Mineralization of CS-Ob was rescued after FGF23 knockdown.
CONCLUSIONS
Our results suggested increased peripheral blood FGF23 levels, decreased bone mineral density in CS patients, and a good predictive ability of CS by peripheral blood FGF23 levels. FGF23 may contribute to osteopenia in CS patients through FGFr3/TNAP / OPN pathway.
Humans
;
Osteopontin/genetics*
;
Alkaline Phosphatase/metabolism*
;
Receptor, Fibroblast Growth Factor, Type 3/metabolism*
;
Scoliosis/genetics*
;
Osteoblasts/metabolism*
;
Calcinosis
;
RNA, Messenger/metabolism*
;
Bone Diseases, Metabolic/metabolism*
;
Fibroblast Growth Factors/genetics*
3.Hyperoxia caused intestinal metabolism disorder in mice.
Wen ZHANG ; Tao CHEN ; Bao FU ; Huajun CHEN ; Xiaoyun FU ; Zhouxiong XING
Chinese Critical Care Medicine 2023;35(9):980-983
OBJECTIVE:
To investigate the effect of hyperoxia on intestinal metabolomics in mice.
METHODS:
Sixteen 8-week-old male C57BL/6 mice were randomly divided into hyperoxia group and control group, with 8 mice in each group. The hyperoxia group was exposed to 80% oxygen for 14 days. Mice were anesthetized and euthanized, and cecal contents were collected for untargeted metabolomics analysis by liquid chromatography-mass spectrometry (LC-MS) combined detection. Orthogonal partial least square discriminant analysis (OPLS-DA), volcano plot analysis, heat map analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the effects of hyperoxia on metabolism.
RESULTS:
(1) OPLS-DA analysis showed that R2Y was 0.967 and Q2 was 0.796, indicating that the model was reliable. (2) Volcano plot and heat map analysis showed significant statistical differences in the expression levels of metabolites between the two groups, with 541 up-regulated metabolites, 64 down-regulated metabolites, and 907 no differences, while the elevated 5-hydroxy-L-lysine was the most significant differential metabolite induced by high oxygen. (3) KEGG pathway enrichment analysis showed that porphyrin and chlorophyll metabolism (P = 0.005), lysine degradation (P = 0.047), and aromatic compound degradation (P = 0.024) were the targets affected by hyperoxia. (4) Differential analysis of metabolic products through KEGG enrichment pathway showed that hyperoxia had a significant impact on the metabolism of porphyrin and chlorophyll, lysine, and aromatic compounds such as benzene and o-cresol.
CONCLUSIONS
Hyperoxia significantly induces intestinal metabolic disorders. Hyperoxia enhances the metabolism of porphyrins and chlorophyll, inhibits the degradation of lysine, and delays the degradation of aromatic compounds such as benzene and o-cresol.
Mice
;
Male
;
Animals
;
Lysine
;
Hyperoxia
;
Benzene
;
Mice, Inbred C57BL
;
Metabolic Diseases
;
Oxygen
;
Chlorophyll
;
Porphyrins
;
Biomarkers/metabolism*
4.Effect of viral infection on host cell metabolism: a review.
Yanmei LI ; Yunlin WEI ; Haiyan LI ; Xiuling JI
Chinese Journal of Biotechnology 2023;39(9):3566-3578
As specialized intracellular parasite, viruses have no ability to metabolize independently, so they completely depend on the metabolic mechanism of host cells. Viruses use the energy and precursors provided by the metabolic network of the host cells to drive their replication, assembly and release. Namely, viruses hijack the host cells metabolism to achieve their own replication and proliferation. In addition, viruses can also affect host cell metabolism by the expression of auxiliary metabolic genes (AMGs), affecting carbon, nitrogen, phosphorus, and sulfur cycles, and participate in microbial-driven biogeochemical cycling. This review summarizes the effect of viral infection on the host's core metabolic pathway from four aspects: cellular glucose metabolism, glutamine metabolism, fatty acid metabolism, and viral AMGs on host metabolism. It may facilitate in-depth understanding of virus-host interactions, and provide a theoretical basis for the treatment of viral diseases through metabolic intervention.
Humans
;
Metabolic Networks and Pathways
;
Virus Diseases
;
Carbohydrate Metabolism
;
Host Microbial Interactions
;
Lipid Metabolism
5.Analysis of GCDH gene variant in a child with Glutaric aciduria type I.
Hanjun YIN ; Qiong XUE ; Suyue ZHU
Chinese Journal of Medical Genetics 2022;39(1):39-42
OBJECTIVE:
To explore the genetic basis for a neonate affected with Glutaric aciduria type I (GA-I).
METHODS:
Targeted capture and high-throughput sequencing was carried out for the proband and her parents. Candidate variants were verified by Sanger sequencing.
RESULTS:
The proband was found to harbor compound heterozygous variants of the GCDH gene, namely c.523G>A and c.1190T>C, which was derived from her father and mother, respectively.
CONCLUSION
The compound heterozygous variants of the GCDH gene probably underlay the GA-I in the patient.
Amino Acid Metabolism, Inborn Errors/genetics*
;
Brain Diseases, Metabolic/genetics*
;
Child
;
Female
;
Glutaryl-CoA Dehydrogenase/genetics*
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Infant, Newborn
;
Mutation
6.Exercise regulates lipid metabolism via lipophagy and its molecular mechanisms.
Meng-Ying LI ; Ling-Jie LI ; Chun-Wei MA ; Bing-Hong GAO
Acta Physiologica Sinica 2022;74(2):309-319
Lipophagy is a kind of selective autophagy, which can selectively identify and degrade lipid droplets and plays an important role in regulating cellular lipid metabolism and maintaining intracellular lipid homeostasis. Exercise can induce lipophagy and it is also an effective means of reducing body fat. In this review, we summarized the relationship between exercise and lipophagy in the liver, pancreas, adipose tissue, and the possible molecular mechanisms to provide a new clue for the prevention and treatment of fatty liver, obesity and other related metabolic diseases by exercise.
Autophagy/physiology*
;
Humans
;
Lipid Droplets/metabolism*
;
Lipid Metabolism/physiology*
;
Liver
;
Metabolic Diseases/metabolism*
7.Effects of 275 nm and 310 nm ultraviolet irradiation on bone metabolism in ovariectomized osteoporotic rats.
Wei HE ; Si Wen YANG ; Juan CHEN ; Xiao Jun ZHU ; Zhi Zhong CHEN ; Wen Jun MA
Journal of Peking University(Health Sciences) 2022;54(2):236-243
OBJECTIVE:
To investigate the effect of 275 nm and 310 nm ultraviolet irradiation on ovariectomized rats' bone metabolism.
METHODS:
Twenty four 3-month-old female Sprague-Dawley (SD) rat were randomly divided into control group, sham operated group, 275 nm ultraviolet (UV) irradiation group and 310 nm UV irradiation group. Each group contained 6 rats. The rats in the two irradiation groups were treated with bilateral ovariectomy. The rats in sham operated group received sham operation (They were given the same back incision and a bit of par-ovarian fat were removed). Control group received no disposition. About 24 weeks after operation, all the rats received detailed bone mineral density (BMD) detection again. Detection regions include cervical vertebra, lumbar vertebra, proximal femur, mid femur and distal femur. Next, osteopenia rats in 275 nm irradiation group were UV irradiated 275 nm with fixed illumination intensity (15 μW/cm2) everyday for 16 weeks. The osteopenia rats in 310 nm irradiation group were UV irradiated 310 nm with fixed illumination intensity (15 μW/cm2) everyday for 16 weeks. The backs of the rats were shaved regularly as irradiation area (6 cm×8 cm). After 16-week irradiation, all the rats' BMD of cervical vertebra, lumbar vertebra, proximal femur, mid femur and distal femur were measured. At the end of the trial, all the rats' blood specimens were obtained and serum 25(OH)D, procollagen type Ⅰ N-peptide (PINP) and osteocalcin (OC) were measured.
RESULTS:
Compared with control group [(238.78±26.74) mg/cm3], the BMD of the whole body were significantly lower in 275 nm [(193.34±13.28) mg/cm3] and 310 nm [(191.19±18.48) mg/cm3] irradiation groups (P=0.002, P=0.001). There were no significant difference between sham operated group [(227.20±14.32) mg/cm3] and control group. After 16-week ultraviolet irradiation, the BMD of the whole body were significantly increased in 275 nm [(193.34±13.28) mg/cm3 vs. (221.68±25.52) mg/cm3, P=0.005] and 310 nm groups [(191.19±18.48) mg/cm3 vs. (267.48±20.54) mg/cm3, P < 0.001] after corresponding irradiation. The BMD of the four body regions (lumbar vertebra, proximal femur, mid femur and distal femur) had significantly increased after irradiation in 275 nm irradiation group. For 310 nm irradiation group, the BMD in cervical vertebra, lumbar vertebra, proximal femur, mid femur and distal femur also had increased significantly after 310 nm ultraviolet irradiation. The concentration of serum 25(OH)D and OC was higher in 275 nm irradiation group than in control group [(46.78±5.59) μg/L vs. (21.32±6.65) μg/L, P=0.002;(2.05±0.53) U/L vs. (1.32±0.07) U/L, P=0.022]. Compared with the control, the concentration of serum 25(OH)D [(58.05±12.74) μg/L], OC [(2.04±0.53) U/L] and PINP [(176.16±24.18) U/L] was significantly higher (P < 0.001, P=0.015, P=0.005) in 310 nm irradiation group. However, there were no significantly difference between sham operated group and the control.
CONCLUSION
Both 275 nm and 310 nm ultraviolet could improve rats' vitamin D synthesis. Both 275 nm and 310 nm ultraviolet could improve osteopenia rats' bone condition. The irradiation of 310 nm might be more effective on bone condition improvement.
Animals
;
Bone Density
;
Bone Diseases, Metabolic/metabolism*
;
Female
;
Femur/metabolism*
;
Humans
;
Osteocalcin/metabolism*
;
Ovariectomy
;
Rats
;
Rats, Sprague-Dawley
8.Targeted inhibition of osteoclastogenesis reveals the pathogenesis and therapeutics of bone loss under sympathetic neurostress.
Bingdong SUI ; Jin LIU ; Chenxi ZHENG ; Lei DANG ; Ji CHEN ; Yuan CAO ; Kaichao ZHANG ; Lu LIU ; Minyan DANG ; Liqiang ZHANG ; Nan CHEN ; Tao HE ; Kun XUAN ; Fang JIN ; Ge ZHANG ; Yan JIN ; Chenghu HU
International Journal of Oral Science 2022;14(1):39-39
Sympathetic cues via the adrenergic signaling critically regulate bone homeostasis and contribute to neurostress-induced bone loss, but the mechanisms and therapeutics remain incompletely elucidated. Here, we reveal an osteoclastogenesis-centered functionally important osteopenic pathogenesis under sympatho-adrenergic activation with characterized microRNA response and efficient therapeutics. We discovered that osteoclastic miR-21 was tightly regulated by sympatho-adrenergic cues downstream the β2-adrenergic receptor (β2AR) signaling, critically modulated osteoclastogenesis in vivo by inhibiting programmed cell death 4 (Pdcd4), and mediated detrimental effects of both isoproterenol (ISO) and chronic variable stress (CVS) on bone. Intriguingly, without affecting osteoblastic bone formation, bone protection against ISO and CVS was sufficiently achieved by a (D-Asp8)-lipid nanoparticle-mediated targeted inhibition of osteoclastic miR-21 or by clinically relevant drugs to suppress osteoclastogenesis. Collectively, these results unravel a previously underdetermined molecular and functional paradigm that osteoclastogenesis crucially contributes to sympatho-adrenergic regulation of bone and establish multiple targeted therapeutic strategies to counteract osteopenias under stresses.
Adrenergic Agents/pharmacology*
;
Apoptosis Regulatory Proteins/pharmacology*
;
Bone Diseases, Metabolic/metabolism*
;
Humans
;
Liposomes
;
MicroRNAs/genetics*
;
Nanoparticles
;
Osteoclasts
;
Osteogenesis/physiology*
;
RNA-Binding Proteins/pharmacology*
9.The correlations of abdominal adipose tissue with anthropometric and metabolic parameters in obese children by magnetic resonance imaging.
Jia Qi LI ; Xin WANG ; Lu Ting PENG ; Wu YAN ; Qian Qi LIU ; Xiao Nan LI
Chinese Journal of Pediatrics 2022;60(8):798-803
Objective: To explore abdominal fat mass distribution and contents among obese children via magnetic resonance imaging (MRI), and analyze the correlations of abdominal adipose tissue with anthropometric and metabolic parameters. Methods: Cross-sectional study. There were 60 obese children admitted to the Children's Health Care Department and Endocrinology Department at Children's Hospital of Nanjing Medical University from July 2016 to December 2018. Children's gender, age, height, weight, body composition, waist circumference and blood pressure were recorded. The levels of fasting blood glucose, lipids, insulin were measured, and liver ultrasound was performed, and the body mass index Z score (BMI-Z), waist-to-height ratio (WHtR) and homeostasis model assessment of insulin resistance (HOMA-IR) were calculated. In addition, contents of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and total abdominal adipose tissue (TAAT) were calculated according to feedback of abdominal MRI scan images. The associations between the contents of abdominal adipose tissue, physical examination status and metabolic disorders among obese children were analyzed through correlation analysis and regression analysis. Receiver operating characteristic (ROC) curve was used to compare the accuracy of fat mass in different parts of the abdomen in predicting their metabolic disorders. Results: A total of 60 children were enrolled in the study, included 44 boys and 16 girls, with age of (9.2±1.4) years. The contents of SAT, VAT and TAAT among the 60 children were positively associated with BMI-Z (r=0.60, 0.46, 0.59), body fat percentage (r=0.64, 0.67, 0.68) and waist-to-height ratio (r=0.60, 0.57, 0.61) (all P<0.01). Meanwhile, contents of SAT and TAAT were also positively correlated with systolic blood pressure (r=0.47, 0.49), triglyceride (r=0.33, 0.35) and HOMA-IR (r=0.33, 0.28)(all P<0.05). In order to adjust the confounding effects among various variables, regression analysis was applied and the result showed that the body fat percentage (β=0.59, 0.66, 0.65) and waist-to-height ratio (β=0.53, 0.63, 0.59) were most related to abdominal fat contents (all P<0.01), including SAT, VAT and TAAT among obese children. According to ROC, SAT had outstanding evaluation performances for the diagnosis of insulin resistance and metabolic syndrome, while VAT had excellent evaluation performances for non-alcoholic fatty liver disease (area under curve=0.68, 0.69, 0.69, 95%CI 0.54-0.82, 0.55-0.84, 0.53-0.85, P=0.017, 0.014, 0.019). Conclusions: As one of the best indexes, body fat percentage and WHtR can be used to predict the contents of SAT, VAT and TAAT among obese children. With the increase of abdominal SAT or VAT, the risks for insulin resistance, metabolic syndrome and non-alcoholic fatty liver disease would increase. Assessment of abdominal fat and metabolic risks in obese children should combine BMI-Z with waist circumference and body composition analysis.
Abdominal Fat/metabolism*
;
Body Mass Index
;
Child
;
Cross-Sectional Studies
;
Female
;
Humans
;
Insulin Resistance
;
Magnetic Resonance Imaging
;
Male
;
Metabolic Diseases/metabolism*
;
Metabolic Syndrome/metabolism*
;
Non-alcoholic Fatty Liver Disease
;
Pediatric Obesity/metabolism*
10.Leisure Time Physical Activity to Reduce Metabolic Syndrome Risk: A 10-Year Community-Based Prospective Study in Korea
Hoon JO ; Jang Young KIM ; Min Ye JUNG ; Yeon Soon AHN ; Sei Jin CHANG ; Sang Baek KOH
Yonsei Medical Journal 2020;61(3):218-228
PURPOSE: Metabolic syndrome (MetS) is a major public health problem related to increased risks of cardiovascular disease and type 2 diabetes. We investigated whether recommended levels of leisure time physical activity (LTPA) decrease the risk of MetS in a community-based prospective cohort study (Ansung and Ansan cohort).MATERIALS AND METHODS: A total of 3910 adults (1890 men, 2020 women) without MetS examined in 2001–2002 (baseline) were included in this study and followed up from 2013 to 2014. We measured LTPA energy expenditure using the standard metabolic equivalent value [metabolic equivalent of task (MET)-h/wk]. Individuals were categorized into five groups (physically inactive, 0.1 to <7.5, 7.5 to <15.0, 15.0 to <22.5, 22.5 to <40.0, and ≥40.0 MET-h/wk).RESULTS: The mean follow-up period was 11.8 years. Among the cohort, 482 men (25.5%) and 541 women (26.8%) were diagnosed with newly developed MetS. Multivariate logistic analysis revealed a 4.4% lower MetS risk among those performing two to three times the recommended minimum of 7.5 MET-h/wk [multivariate relative risk (RR), 0.956; 95% confidence interval (CI), 0.654–1.398] and a 21.9% lower risk among those performing three to four times the physical activity minimum (multivariate RR, 0.781; 95% CI, 0.574–1.063). This association was only significant in females performing three to four times the minimum (crude RR, 0.655; 95% CI, 0.432–0.994).CONCLUSION: We noted that physical activity at more than 2 times the recommended minimum prevents MetS. Healthcare professionals should encourage inactive adults to be physically active during their leisure time to take advantage of its health benefits.
Adult
;
Cardiovascular Diseases
;
Cohort Studies
;
Delivery of Health Care
;
Energy Metabolism
;
Female
;
Follow-Up Studies
;
Gyeonggi-do
;
Humans
;
Insurance Benefits
;
Korea
;
Leisure Activities
;
Male
;
Metabolic Equivalent
;
Motor Activity
;
Prospective Studies
;
Public Health

Result Analysis
Print
Save
E-mail