1.Research progress of the regulatory role of autophagy in metabolic liver diseases.
Yu Xian LI ; Feng REN ; Yu CHEN
Chinese Journal of Hepatology 2023;31(1):105-108
Autophagy is one of several hepatic metabolic processes in which starved cells are supplied with glucose, free fatty acids, and amino acids to produce energy and synthesize new macromolecules. Moreover, it regulates the quantity and quality of mitochondria and other organelles. As the liver is a vital metabolic organ, specific forms of autophagy are necessary for maintaining liver homeostasis. Protein, fat, and sugar are the three primary nutrients that can be altered by different metabolic liver diseases. Drugs that have an effect on autophagy can either promote or inhibit autophagy, and as a result, it can either increase or inhibit the three major nutritional metabolisms that are affected by liver disease. Thus, this opens up a novel therapeutic option for liver disease.
Humans
;
Liver/metabolism*
;
Liver Diseases
;
Autophagy
;
Metabolic Diseases
;
Mitochondria
4.The Immune Landscape in Nonalcoholic Steatohepatitis.
Sowmya NARAYANAN ; Fionna A SURETTE ; Young S HAHN
Immune Network 2016;16(3):147-158
The liver lies at the intersection of multiple metabolic pathways and consequently plays a central role in lipid metabolism. Pathological disturbances in hepatic lipid metabolism are characteristic of chronic metabolic diseases, such as obesity-mediated insulin resistance, which can result in nonalcoholic fatty liver disease (NAFLD). Tissue damage induced in NAFLD activates and recruits liver-resident and non-resident immune cells, resulting in nonalcoholic steatohepatitis (NASH). Importantly, NASH is associated with an increased risk of significant clinical sequelae such as cirrhosis, cardiovascular diseases, and malignancies. In this review, we describe the immunopathogenesis of NASH by defining the known functions of immune cells in the progression and resolution of disease.
Cardiovascular Diseases
;
Fatty Liver
;
Fibrosis
;
Insulin Resistance
;
Lipid Metabolism
;
Liver
;
Metabolic Diseases
;
Metabolic Networks and Pathways
;
Non-alcoholic Fatty Liver Disease*
5.Exercise regulates lipid metabolism via lipophagy and its molecular mechanisms.
Meng-Ying LI ; Ling-Jie LI ; Chun-Wei MA ; Bing-Hong GAO
Acta Physiologica Sinica 2022;74(2):309-319
Lipophagy is a kind of selective autophagy, which can selectively identify and degrade lipid droplets and plays an important role in regulating cellular lipid metabolism and maintaining intracellular lipid homeostasis. Exercise can induce lipophagy and it is also an effective means of reducing body fat. In this review, we summarized the relationship between exercise and lipophagy in the liver, pancreas, adipose tissue, and the possible molecular mechanisms to provide a new clue for the prevention and treatment of fatty liver, obesity and other related metabolic diseases by exercise.
Autophagy/physiology*
;
Humans
;
Lipid Droplets/metabolism*
;
Lipid Metabolism/physiology*
;
Liver
;
Metabolic Diseases/metabolism*
6.Exosomes as the source of biomarkers of metabolic diseases.
Min Jae LEE ; Dong Ho PARK ; Ju Hee KANG
Annals of Pediatric Endocrinology & Metabolism 2016;21(3):119-125
Exosomes are extracellular vesicles that contain molecules that regulate the metabolic functions of adjacent or remote cells. Recent in vitro, in vivo and clinical studies support the hypothesis that exosomes released from various cell types play roles in the progression of metabolic disorders including type 2 diabetes. Based on this concept and advances in other diseases, the proteins, mRNA, microRNA and lipids in exosomes isolated from biological fluids have been proposed as biomarkers in metabolic disorders. However, several problems with the development of clinically applicable biomarkers have not been resolved. In this review, the biologic functions of exosomes are briefly introduced, and we discuss the technical and practical pros and cons of different methods of exosome isolation for the identification of exosomal biomarkers of metabolic disorders. Standardization of preanalytical variables and isolation of high-purity exosomes from fully characterized biological fluids will be necessary for the identification of useful exosomal biomarkers that can provide insights into the pathogenic mechanisms of complications of metabolic syndrome and of whole-body metabolism.
Biomarkers*
;
Diabetes Mellitus
;
Exosomes*
;
Extracellular Vesicles
;
In Vitro Techniques
;
Metabolic Diseases*
;
Metabolic Syndrome X
;
Metabolism
;
MicroRNAs
;
RNA, Messenger
7.Exosomes as the source of biomarkers of metabolic diseases.
Min Jae LEE ; Dong Ho PARK ; Ju Hee KANG
Annals of Pediatric Endocrinology & Metabolism 2016;21(3):119-125
Exosomes are extracellular vesicles that contain molecules that regulate the metabolic functions of adjacent or remote cells. Recent in vitro, in vivo and clinical studies support the hypothesis that exosomes released from various cell types play roles in the progression of metabolic disorders including type 2 diabetes. Based on this concept and advances in other diseases, the proteins, mRNA, microRNA and lipids in exosomes isolated from biological fluids have been proposed as biomarkers in metabolic disorders. However, several problems with the development of clinically applicable biomarkers have not been resolved. In this review, the biologic functions of exosomes are briefly introduced, and we discuss the technical and practical pros and cons of different methods of exosome isolation for the identification of exosomal biomarkers of metabolic disorders. Standardization of preanalytical variables and isolation of high-purity exosomes from fully characterized biological fluids will be necessary for the identification of useful exosomal biomarkers that can provide insights into the pathogenic mechanisms of complications of metabolic syndrome and of whole-body metabolism.
Biomarkers*
;
Diabetes Mellitus
;
Exosomes*
;
Extracellular Vesicles
;
In Vitro Techniques
;
Metabolic Diseases*
;
Metabolic Syndrome X
;
Metabolism
;
MicroRNAs
;
RNA, Messenger
8.Review: plant polyphenols modulate lipid metabolism and related molecular mechanism.
Yan-li DAI ; Yu-xiao ZOU ; Fan LIU ; Hong-zhi LI
China Journal of Chinese Materia Medica 2015;40(21):4136-4141
Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.
Animals
;
Humans
;
Lipid Metabolism
;
drug effects
;
Metabolic Diseases
;
drug therapy
;
metabolism
;
Polyphenols
;
pharmacology
9.Effect of viral infection on host cell metabolism: a review.
Yanmei LI ; Yunlin WEI ; Haiyan LI ; Xiuling JI
Chinese Journal of Biotechnology 2023;39(9):3566-3578
As specialized intracellular parasite, viruses have no ability to metabolize independently, so they completely depend on the metabolic mechanism of host cells. Viruses use the energy and precursors provided by the metabolic network of the host cells to drive their replication, assembly and release. Namely, viruses hijack the host cells metabolism to achieve their own replication and proliferation. In addition, viruses can also affect host cell metabolism by the expression of auxiliary metabolic genes (AMGs), affecting carbon, nitrogen, phosphorus, and sulfur cycles, and participate in microbial-driven biogeochemical cycling. This review summarizes the effect of viral infection on the host's core metabolic pathway from four aspects: cellular glucose metabolism, glutamine metabolism, fatty acid metabolism, and viral AMGs on host metabolism. It may facilitate in-depth understanding of virus-host interactions, and provide a theoretical basis for the treatment of viral diseases through metabolic intervention.
Humans
;
Metabolic Networks and Pathways
;
Virus Diseases
;
Carbohydrate Metabolism
;
Host Microbial Interactions
;
Lipid Metabolism
10.Microvesicles as Emerging Biomarkers and Therapeutic Targets in Cardiometabolic Diseases.
Yan CHEN ; Guangping LI ; Ming-Lin LIU
Genomics, Proteomics & Bioinformatics 2018;16(1):50-62
Microvesicles (MVs, also known as microparticles) are small vesicles that originate from plasma membrane of almost all eukaryotic cells during apoptosis or activation. MVs can serve as extracellular vehicles to transport bioactive molecules from their parental cells to recipient target cells, thereby serving as novel mediators for intercellular communication. Importantly, more and more evidence indicates that MVs could play important roles in early pathogenesis and subsequent progression of cardiovascular and metabolic diseases. Elevated plasma concentrations of MVs, originating from red blood cells, leukocytes, platelets, or other organs and tissues, have been reported in various cardiometabolic diseases. Circulating MVs could serve as potential biomarkers for disease diagnosis or therapeutic monitoring. In this review, we summarized recently-published studies in the field and discussed the role of MVs in the pathogenesis of cardiometabolic diseases. The emerging values of MVs that serve as biomarker for non-invasive diagnosis and prognosis, as well as their roles as novel therapeutic targets in cardiometabolic diseases, were also described.
Biomarkers
;
metabolism
;
Cardiovascular Diseases
;
blood
;
diagnosis
;
therapy
;
Cell Communication
;
Cell-Derived Microparticles
;
metabolism
;
Humans
;
Metabolic Diseases
;
blood
;
diagnosis
;
therapy