1.Study on migration property of mesenchymal stem cells-review.
Xin-Long YAN ; Bin LIU ; Ning MAO
Journal of Experimental Hematology 2009;17(4):1101-1105
Mesenchymal stem cells (MSCs) are multipotent stem cells which can support hematopoiesis, have immunomodulatory property, may differentiate into osteocytes, chondrocytes and adipocytes, and specifically migrate to damage sites and tumor site, but the mechanism involved in the regulation of migration of MSCs still remains unelucidated. Understanding the fundamental mechanisms underlying MSCs migration holds the promise of developing novel clinical strategies which can deliver antitumor proteins to suppress tumor growth. In this review, the MSC migration in vitro mediated by growth factors, chemokines, adhesion molecules and toll-like receptors are summarized.
Cell Movement
;
physiology
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
metabolism
2.Mesenchymal stem cells in hematopoietic regulation--review.
Journal of Experimental Hematology 2006;14(1):187-190
As the progenitor of most cell components in the hematopoietic microenvironment, mesenchymal stem cells (MSC) exhibit self-renewal and multilineage differentiation capacity. Through direct interaction with hematopoietic cells, secreting extracellular matrix and factors, MSC maintain the integrity of hematopoietic microenvironment and regulate hematopoiesis accurately. This review summarized the function of MSC in hematopoietic regulation, such as secretion of cytokines supporting hematopoiesis, MSC expression and adhesion molecules interacting with hematopoietic cells, and supportive effects of transplantation combining MSC with HSC on hematopoietic reconstruction, and its clinical perspectives.
Cell Communication
;
Cytokines
;
biosynthesis
;
Hematopoiesis
;
physiology
;
Hematopoietic Stem Cells
;
physiology
;
Mesenchymal Stromal Cells
;
physiology
4.Advances in the research of the role of mesenchymal stem cell in wound healing.
Lingying LIU ; Jiake CHAI ; Yonghui YU ; Yusen HOU
Chinese Journal of Burns 2014;30(2):134-137
Wound healing is a dynamic and complicated process, which generally takes three overlapping phases: inflammation, proliferation, and remodeling. If wounds complicated by severe trauma, diabetes, vascular dysfunction disease, or a massive burn injury failed to pass through the three normal phases of healing, they might end up as chronic and refractory wounds. Mesenchymal stem cells (MSCs) play different important roles in the regulation of all the phases of wound healing. MSCs can be recruited into wound and differentiated into wound repair cells, as well as promote wound healing by exerting functions like anti-inflammation, anti-apoptosis, and neovascularization. This review focuses on the role and mechanism of MSCs in each phase of the wound healing process.
Burns
;
therapy
;
Cell Differentiation
;
Humans
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
physiology
;
Skin
;
Wound Healing
5.Advances of studies on mesenchymal stem cells.
Chinese Journal of Biotechnology 2003;19(2):136-140
Bone marrow mesenchymal stem cells (MSCs) are defined as pluripotent cells which have high self-renewal capacity and multipotentiality for differentiation. Because of their characteristics of supporting hematopoietisis, multipotentiality for differentiation and their possible use for both cell and gene engineerings, MSCs will have important value in clinic use.
Animals
;
Cell Differentiation
;
genetics
;
physiology
;
Humans
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
cytology
;
metabolism
;
physiology
;
Models, Biological
6.New progress of study on labeling methods in vitro and distribution in vivo of mesenchymal stem cells.
Journal of Experimental Hematology 2011;19(5):1339-1342
Mesenchymal stem cells (MSC) are a kind of non-hematopoietic adult stem cells with highly self-renewal and multilineage differentiation potential. Because MSC can be easily obtained and expanded in large amount in vitro, they have become a hot field of stem cell research in recent years. MSC as a seed carrier of cells and gene therapy have been widely used in cardiovascular, nervous, respiratory diseases, wound healing and other aspects in clinic. But some biological characteristics and the molecular control mechanisms of MSC are not very clear and need further explorations. The MSC isolated and cultured in vitro are a type of multipotent differentiation cells, which differentiation potential in vivo has still uncertained, the effectiveness and safety such as gene mutations and canceration in vivo remains to be explored. Deepgoing studys on homing characteristics, mechanisms and influence factors of MSC also contribute to the clinical application, and the studys on the MSC differentiation fate in microenvironment in vivo would be better for clinical application. So how stably and efficiently label MSC in vitro is the key problem to monitoring the survival, migration, distribution, proliferation and differentiation of MSC in vivo. This review summarizes the current progress of study on the new labeling methods in vitro of MSC, discussing the advantages and disadvantages of different in vitro labeling methods and application of appropriate conditions.
Biomarkers
;
metabolism
;
Cell Differentiation
;
Cells, Cultured
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
metabolism
;
physiology
7.Isolation, culture and multipotent differentiation of mesenchymal stem cells from human fetal livers.
Xun-Zhuan ZHAO ; Lai WEI ; Mei HAN ; Ling-Song LI
Chinese Journal of Hepatology 2004;12(12):711-713
OBJECTIVETo isolate and culture mesenchymal stem cells (MSCs) from human fetal livers and describe their biological characteristics.
METHODSMSCs were acquired using an optimized method. Cell cycles and the immunophenotype of the cells were analyzed by flow cytometry. The osteogenic and adipogenic differentiations were induced and identified by specific stainings, and hepatic differentiation by morphology and RT-PCR.
RESULTSThe target cells derived from human fetal livers adhered to the plate with fibroblast-like morphology, whose surface markers were CD90, CD44, CD147 positive, and CD34, CD45, HLA-DR negtive. In the differentiation study, these cells could be induced to differentiate into osteogenic, adipogenic and hepatocyte-like cells.
CONCLUSIONMultipotent MSCs can be isolated and cultured from human fetal livers.
Cell Differentiation ; physiology ; Cell Separation ; Cells, Cultured ; Fetus ; Humans ; Liver ; cytology ; Mesenchymal Stromal Cells ; cytology
8.Research on biological and genetic characteristics of human placenta mesenchymal stem cells cultured in vitro.
Dongming ZHENG ; ; Xiaorui LI ; Yue LIU ; Haiyan LI ; Ming MA ; Yin DENG ; Jianglin LI ; Shuangqing CEN ; Rong ZHANG ; Quan HAI
Chinese Journal of Medical Genetics 2016;33(4):471-475
OBJECTIVETo investigate the biological characteristics and genetic features of human placenta mesenchymal stem cells (hPA-MSCs) cultured in vitro in order to assess its safety for clinical use.
METHODSThe shapes of the 1st, 3rd, 5th, 7th, 10th, 13th, 17th and 20th generation hPA-MSCs cultured in vitro using serum-free culture medium were observed. Their cell cycle, cell surface markers, and karyotype were analyzed, and relevant genes and cytokines were measured.
RESULTSThe shape of hPA-MSCs has remained as fusiform or short fusiform, and there was no significant change. About 93% of hPA-MSCs cells were in G0/G1 phase and remained stable. No obvious chromosomal translocation, loss or inversion was noted by karyotyping analysis. Cytokines expression level remained stable. Related gene expression level as a whole was on the decline, but the gene expression level of the first five generations showed very slight variations, with genetic characteristics remaining stable.
CONCLUSIONThe hPA-MSCs cultured in vitro with serum-free medium has retained stable in the first five generations.
Cells, Cultured ; Cytokines ; analysis ; Female ; Humans ; Karyotyping ; Mesenchymal Stromal Cells ; physiology ; Placenta ; cytology ; Pregnancy
9.Roles of matrix metalloproteinase in migration and differentiation of bone marrow-derived mesenchymal stem cells.
Journal of Biomedical Engineering 2012;29(2):387-396
Matrix metalloproteinases (MMPs) are endocellular proteolytic enzymes. They are so named because they need Ca2+, Zn2+ and other metal ions as their cofactors. MMPs play an important biological role in regulating the formation, remodeling and degradation of extracellular matrix and participate in various physiological and pathological processes of cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are a kind of pluripotent stem cell which has the ability to self-renew and differentiate into functional cells. Meanwhile, they can respond to the damage signals and migrate to injured site for tissue repair and regeneration. MMPs and their inhibitors TIMPs affect the differentiation and migration of BMSCs. This article reviews the roles of MMPs in differentiation and migration of BMSCs.
Bone Marrow Cells
;
cytology
;
Cell Differentiation
;
physiology
;
Cell Movement
;
physiology
;
Humans
;
Matrix Metalloproteinases
;
physiology
;
Mesenchymal Stromal Cells
;
cytology
10.Biological characteristics of human fetal osteoblastic 1.19 cell line.
Wen-Ming CHEN ; Zi-Xing CHEN ; Jian-Nong CEN ; Jun HE ; Xue-Li JIAO ; Ya-Fang WU ; Jun ZHANG ; Qiao-Cheng QIU ; Lan DAI
Journal of Experimental Hematology 2008;16(2):339-344
This study was aimed to investigate the biological characteristics of osteoblasts and their hematopoietic supportive function by using human fetal osteoblastic cell line 1.19 (hFOBs) as a model. The pluripotency markers (Oct-4, Rex-1, hTERT) of hFOBs were analyzed by RT-PCR, the multilineage differentiation experiments were conducted in vitro. Flow cytometry (FCM) was used to identify the surface markers of hFOBs, and RT-PCR was used to analyze their hematopoietic cytokine expression in comparison with bone marrow mesenchymal stem cell (BM-MSC). The results showed that hFOBs expressed several ESC pluripotency markers including Oct-4 and Rex-1, except hTERT. Moreover, hFOBs could also undergo multilineage differentiation into the mesodermal lineages of adipocytic cell types in addition to its predetermined pathway, the mature osteoblast. Both hFOBs and BM-MSC expressed CD44, CD73 (SH3), CD105 (SH2) and CD90 (Thy1), and lack expression of CD34, CD45, or HLA-DR surface molecules. In addition, both hFOBs and BM-MSC expressed SCF, IL-6, and SDF-1alpha mRNA, but only hFOBs could express GM-CSF and G-CSF. It is concluded that human fetal osteoblastic cell line 1.19 may provide a good model to study the osteoblastic regulation role in hematopoiesis in vitro.
Cell Differentiation
;
physiology
;
Cell Line
;
Fetus
;
Hematopoiesis
;
physiology
;
Humans
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
;
Models, Biological
;
Osteoblasts
;
cytology
;
physiology