1.Effect of Total Ravonoids of Herba Epimedium on BMP-2/RunX2/OSX Signaling Pathway during Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells.
Guang-sheng LIANG ; Wei-cai CHEN ; Chang-chang YIN ; Ming YIN ; Xue-qin CAO
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):614-618
OBJECTIVETo explore the effect of total flavonoids of Herba Epimedium (FHE) on BMP-2/RunX2/OSX signaling pathway in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).
METHODSPassage 3 BMSCs were randomly divided into the control group, the experimental group, and the inhibitor group. BMSCs in the control group were cultured in 0.2% dimethyl sulfoxide + Osteogenuxic Supplement (OS) fluid + DMEM/F12 culture media. BMSCs in the experimental group were intervened by 20 microg/mL FHE. BMSCs in the inhibitor group were intervened by 20 microg/mL FHE and 1 microg/mL NOGGIN recombinant protein. At day 9 alkaline phosphatase (ALP) activity was measured. Calcium nodules were stained by alizarin red staining and the density was observed. The transcription expression of osteogenic differentiation-related proteins (type I collagen, osteocalcin, and osteopontin) and related factors of BMP-2/RunX2/OSX signaling pathway was assayed by RT-PCR.
RESULTSCompared with the control group, ALP activities were enhanced and the density of calcium nodules significantly increased; type I collagen, osteocalcin, and osteopontin expression levels were increased in the experimental group. The expression of osteogenesis-related transcription factor was also increased in the experimental group. Noggin recombinant protein inhibited FHE promoting BMSCs osteogenesis in the inhibitor group. Compared with the experimental group, ALP activity decreased (P < 0.05), the density of calcium nodules was lowered, expression levels of type I collagen, osteocalcin, osteopontin significantly decreased (P < 0.05) in the inhibitor group.
CONCLUSION20 microg/mL FHE promoted osteogenic differentiation process of BMSCs by BMP-2/RunX2/OSX signaling pathway.
Bone Morphogenetic Protein 2 ; metabolism ; Cell Differentiation ; drug effects ; Cells, Cultured ; Collagen Type I ; metabolism ; Core Binding Factor Alpha 1 Subunit ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Epimedium ; chemistry ; Flavonoids ; pharmacology ; Humans ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Osteocalcin ; metabolism ; Osteogenesis ; drug effects ; Osteopontin ; metabolism ; Signal Transduction ; Sp7 Transcription Factor ; Transcription Factors ; metabolism
2.Effects of retinol on expressions of epidermal growth factor, stem cell factor, colony-stimulating factor 1 and leukemia inhibitory factor in human umbilical cord-derived mesenchymal stem cells.
Hua-Li ZHUO ; Li-Peng BAI ; Dan LIU ; Shu-Min YU ; Dan-Ting LI ; Qian LIU ; Pin SONG ; Sui-Zhong CAO ; Liu-Hong SHEN
Journal of Southern Medical University 2016;37(2):221-225
OBJECTIVETo investigate effects of retinol on the expressions of epidermal growth factor (EGF), stem cell factor (SCF), colony-stimulating factor 1 (CSF1) and leukemia inhibitory factor (LIF) in cultured human umbilical-derived mesenchymal stem cells (UCMSCs).
METHODSHuman UCMSCs were isolated from human umbilical cord and identified for immunophenotypes. The cells were then cultured in DMEM/F12 media supplemented with 12% fetal bovine serum (FBS), 12% FBS+1 µmol/L retinol, 15% knockout serum replacement (KSR) and 15% KSR+ 1 µmol/L retinol. The expressions of the cytokines EGF, SCF, CSF1 and LIF in the cells were detected using RT-PCR and ELISA.
RESULTSThe isolated cells exhibited characteristic immunophenotypes of human UCMSCs and expressed EGF, CSF1 and SCF at both mRNA and protein levels but not LIF protein. Retinol (1 µmol/L) significantly promoted the expressions of SCF and CSF1 at both mRNA and protein levels but did not result in changes of EGF and LIF expressions in human UCMSCs.
CONCLUSIONRetinol at the concentration of 1 µmol/L can promote expression of SCF and CSF1 in human UCMSCs in vitro.
Cell Differentiation ; Cells, Cultured ; EGF Family of Proteins ; metabolism ; Humans ; Immunophenotyping ; Leukemia Inhibitory Factor ; metabolism ; Macrophage Colony-Stimulating Factor ; metabolism ; Mesenchymal Stromal Cells ; drug effects ; metabolism ; Stem Cell Factor ; metabolism ; Umbilical Cord ; cytology ; Vitamin A ; pharmacology
3.Effects of culture supernatant of human amnion mesenchymal stem cells on biological characteristics of human fibroblasts.
Qi'er WU ; Lu LYU ; Haiming XIN ; Liang LUO ; Yalin TONG ; Yongliang MO ; Yigang YUE
Chinese Journal of Burns 2016;32(6):370-375
OBJECTIVETo investigate the effects of culture supernatant of human amnion mesenchymal stem cells (hAMSCs-CS) on biological characteristics of human fibroblasts.
METHODS(1) hAMSCs were isolated from deprecated human fresh amnion tissue of placenta and then sub-cultured. The morphology of hAMSCs on culture day 3 and hAMSCs of the third passage were observed with inverted phase contrast microscope. (2) Two batches of hAMSCs of the third passage were obtained, then the expression of vimentin of cells was observed with immunofluorescence method, and the expression of cell surface marker CD90, CD73, CD105, and CD45 was detected by flow cytometer. (3) hAMSCs-CS of the third passage at culture hour 72 were collected, and the content of insulin-like growth factor Ⅰ (IGF-Ⅰ), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF) were detected by enzyme-linked immunosorbent assay. (4) Human fibroblasts were isolated from deprecated human fresh prepuce tissue of circumcision and then sub-cultured. Human fibroblasts of the third passage were used in the following experiments. Cells were divided into blank control group and 10%, 30%, 50%, and 70% hAMSCs-CS groups according to the random number table (the same grouping method below), with 48 wells in each group. Cells in blank control group were cultured with DMEM/F12 medium containing 2% fetal bovine serum (FBS), while cells in the latter 4 groups were cultured with DMEM/F12 medium containing corresponding volume fraction of hAMSCs-CS and 2% FBS. The proliferation activity of cells was detected by cell counting kit 8 and microplate reader at culture hour 12, 24, 48, and 72, respectively, and corresponding volume fraction of hAMSCs-CS which causing the best proliferation activity of human fibroblasts was used in the following experiments. (5) Human fibroblasts were divided into blank control group and 50% hAMSCs-CS group and treated as in (4), with 4 wells in each group, at post scratch hour (PSH) 0 (immediately after scratch), 12, 24, 48, and 72, the migration distance of cells was observed and measured with inverted phase contrast microscope. (6) Human fibroblasts were grouped and treated as in (5), with 3 battles in each group, and apoptosis rate of cells was detected by flow cytometer. Data were processed with analysis of variance of factorial design, analysis of variance for repeated measurement, one-way analysis of variance, LSD test, and t test.
RESULTS(1) On culture day 3, most hAMSCs were in large form, and spindle-shaped with much prominences like fibroblasts or in flat polygonal shape. hAMSCs of the third passage were spindle-shaped. The expression of vimentin of hAMSCs of the third passage was strongly positive, and the expressions of surface markers CD90, CD73, and CD105 of the cells were positive, while the expression of CD45 of the cells was negative. (2) The content of IGF-Ⅰ, VEGF, EGF, and bFGF in hAMSCs-CS were respectively (11.7±1.0), (316±68), (6.1±0.4), and (1.49±0.05) pg/mL. (3) At culture hour 12-72, the proliferation activity of human fibroblasts in each hAMSCs-CS group was significantly higher than that in blank control group (with P values below 0.01), and the proliferation activity of human fibroblasts in 50% hAMSCs-CS group was the highest. (4) The width of scratch in two groups was nearly the same at PSH 0. The migration distance of cells in 50% hAMSCs-CS group was significantly longer than that in blank control group at PSH 12-72 (with P values below 0.01). (5) The apoptosis rate of human fibroblasts in blank control group was (16.2±2.4)%, which was significantly higher than that in 50% hAMSCs-CS group [(7.4±3.6)%, t=6.710, P<0.01].
CONCLUSIONShAMSCs-CS can promote proliferation and migration of human fibroblasts and inhibit the apoptosis of human fibroblasts.
Amnion ; cytology ; Apoptosis ; Cell Movement ; Cell Proliferation ; Cells, Cultured ; Culture Media, Conditioned ; chemistry ; Enzyme-Linked Immunosorbent Assay ; Epidermal Growth Factor ; metabolism ; Female ; Fibroblast Growth Factor 2 ; metabolism ; Fibroblasts ; cytology ; drug effects ; Flow Cytometry ; Humans ; Insulin-Like Growth Factor I ; metabolism ; Male ; Mesenchymal Stromal Cells ; chemistry ; Pregnancy ; Vascular Endothelial Growth Factor A ; metabolism
4.Effects of Leukemia Inhibitory Factor Combined with Basic Fibroblast Growth Factor on Self-maintenance and Self-renewal of Human Umbilical Cord Mesenchymal Stem Cells In Vitro.
Wen-Long HU ; Ping-Ping WU ; Chang-Chang YIN ; Jian-Ming SHI ; Ming YIN
Journal of Experimental Hematology 2016;24(1):184-190
OBJECTIVETo study the effects of LIF combined with bFGF on the proliferation, stemness and senescence of hUC-MSC.
METHODSExperiments were divided into 4 groups: control group, in which the cells were treated with complete medium (α-MEM containing 10% FBS); group LIF, in which the cells were treated with complete medium containing 10 ng/ml LIF; group bFGF, in which the cells were treated with complete medium containing 10 ng/ml bFGF; combination group, in which the cells were treated with complete medium containing 10 ng/ml LIF and 10 ng/ml bFGF. The growth curves of hUC-MSC at passage 4 in different groups were assayed by cell counting kit 8. Cellular morphologic changes were observed under inverted phase contrast microscope; hUC-MSC senescence in different groups was detected by β-galactosidase staining. The expression of PCNA, P16, P21, P53, OCT4 and NANOG genes was detected by RT-PCR.
RESULTSThe cell growth curves of each group were similar to the S-shape; the cell proliferation rate from high to low as follows: that in the combination group > group bFGF > group LIF > control group. Senescence and declining of proliferation were observed at hUC-MSC very early in control group; the cells in group LIF maintained good cellular morphology at early stage, but cell proliferation was slow and late senescence was observed; a few cells in group bFGF presented signs of senescence, but with quick proliferation; the cells in combination group grew quickly and maintained cellular morphology of hUC-MSC for long time. The LIF and bFGF up-regulated the expression of PCNA, OCT4 and NANOG, while they down-regulated the expression of P16, P21, P53, and their combinative effects were more significant.
CONCLUSIONLIF combined with bFGF not only can promote the proliferation and maintenance of stemness of hUC-MSC, but also can delay the senescence of hUC-MSC.
Cell Cycle ; Cell Differentiation ; Cell Proliferation ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16 ; metabolism ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Fibroblast Growth Factor 2 ; pharmacology ; Genes, Homeobox ; Humans ; Leukemia Inhibitory Factor ; pharmacology ; Mesenchymal Stromal Cells ; cytology ; drug effects ; Octamer Transcription Factor-3 ; metabolism ; Organic Chemicals ; Proliferating Cell Nuclear Antigen ; metabolism ; Tumor Suppressor Protein p53 ; metabolism ; Umbilical Cord ; cytology
5.Effect of Jianpi Bushen Qingchang Huashi Recipe on Proliferation of Bone Marrow Mesenchymal Stem Cells.
Lei ZHU ; Hong SHEN ; Li LIU ; Pei-qing GU ; Jia-fei CHENG ; Lu ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(2):191-195
OBJECTIVETo observe the effect of Jianpi Bushen Qingchang Huashi Recipe (JBQHR) on proliferation and migration of bone marrow mesenchymal stem cells (BMSCs).
METHODSBMSCs were isolated and cultured in vitro with adherence screening method to prepare cell suspension. No drug intervention was given to BMSCs in the vehicle control group. JBQHR at 0.39, 0.78, 1.56 µg/mL was added in BMSCs of low, mid, and high dose JBQHR groups for co-incubation. Its effect on the proliferation of BMSCs was detected by CCK-8. BMSCs migration and chemotactic ability was detected using Transwell method. Each dose JBQHR combined ERK kinase inhibitor U0126 was set up as control. The phosphorylation of extracellular regulated protein kinase (ERK) and CAMP responsive element-binding protein (CREB) were detected by Western blot.
RESULTSCompared with the vehicle control group, the proliferation of BMSCs and BMSCs migration number could be promoted in the 3 JBQHR groups (P < 0.05). Besides, the proliferation of BMSCs was better in mid and high dose JBQHR groups than in the low dose JBQHR group (P < 0.05). Compared with the vehicle control group, the phosphorylation of ERK and CREB could be elevated in the 3 JBQHR groups (P < 0.05), and could be inhibited by U0126 (P < 0.01). Compared with the low dose JBQHR group, the phosphorylation of ERK increased in mid and high dose JBQHR groups with statistical difference (P < 0.05).
CONCLUSIONJBQHR could promote the proliferation and migration of BMSCs, and its mechanism might be related to ERK/CREB signaling pathway
Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Cyclic AMP Response Element-Binding Protein ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Humans ; MAP Kinase Signaling System ; Mesenchymal Stromal Cells ; cytology ; drug effects
6.Effect of aspirin on cell biological activities in murine bone marrow stromal cells.
Mi DU ; Wan PAN ; Pishan YANG ; Shaohua GE
Chinese Journal of Stomatology 2016;51(3):160-165
OBJECTIVETo determine the effect of aspirin on cell proliferation, alkaline phosphatase (ALP) activity, cell cycle and apoptosis in murine bone marrow stromal cells, so as to explore an appropriate dose range to improve bone regeneration in periodontal treatment.
METHODSST2 cells were stimulated with aspirin (concentrations of 1, 10, 100 and 1 000 μmol/L) for 1, 2, 3, 5 and 7 d. Cell proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay. After ST2 cells were treated for 1, 3 and 7 d, ALP activity was measured by ALP kit, cell cycle and apoptosis were measured by flow cytometry (FCM) after treated for 48 h.
RESULTSMTT assays showed that various doses of aspirin have different effects on the cell growth. Briefly, lower concentrations (1, 10 μmol/L) of aspirin promoted the cell growth, the A value of 0, 1 and 10 μmol/L aspirin 7-day-treated cells were 0.313±0.012, 0.413±0.010 and 0.387±0.017 respectively (P <0.01 vs control), and so did the ALP level ([4.3±0.9], [6.0±0.3] and [7.7±0.4] μmol·min(-1)·g(-1), P <0.05 vs control), while higher concentrations, especially 1000 μmol/L of aspirin might inhibit the cell growth with time going, A value and ALP level were 0.267±0.016, (4.3±1.3) μmol·min(-1)·g(-1) respectively (P <0.05 vs control). Cell cycle analysis revealed no changes in comparison to control cells after treatment with 1 or 10 μmol/L aspirin, but it was observed that cell mitosis from S phase to G2/M phase proceeded at higher concentrations of 100 μmol/L aspirin, and the cell cycle in phase G0/G1 arrested at 1000 μmol/L. Parallel apoptosis/necrosis studies showed that the percentage of cells in apoptosis decreased dramatically at all doses of aspirin, the apoptosis rates of ST2 cells responded to 0, 1, 10, 100 and 1000 μmol/L aspirin were (11.50±0.90)%, (5.30±0.10)%, (5.50±0.10)%, (4.90±0.90)% and (7.95±0.25)% respectively (P<0.05 vs control).
CONCLUSIONSThis study demonstrated that lower dosage of aspirin can promote ST2 cells growth, osteogenic activity and inhibit its apoptosis. Aspirin maybe used for the bone reconstruction with a proper concentration.
Alkaline Phosphatase ; metabolism ; Animals ; Apoptosis ; drug effects ; Aspirin ; administration & dosage ; pharmacology ; Bone Regeneration ; Cell Cycle ; drug effects ; Cell Division ; Cell Line, Tumor ; Cell Proliferation ; Flow Cytometry ; Formazans ; Mesenchymal Stromal Cells ; cytology ; drug effects ; enzymology ; Mice ; Periodontics ; Tetrazolium Salts ; Time Factors
7.Allogeneic clonal mesenchymal stem cell therapy for refractory graft-versus-host disease to standard treatment: a phase I study.
Hyeon Gyu YI ; Seung Ah YAHNG ; Inho KIM ; Je Hwan LEE ; Chang Ki MIN ; Jun Hyung KIM ; Chul Soo KIM ; Sun U SONG
The Korean Journal of Physiology and Pharmacology 2016;20(1):63-67
Severe graft-versus-host disease (GVHD) is an often lethal complication of allogeneic hematopoietic stem cell transplantation (HSCT). The safety of clinical-grade mesenchymal stem cells (MSCs) has been validated, but mixed results have been obtained due to heterogeneity of the MSCs. In this phase I study, the safety of bone marrow-derived homogeneous clonal MSCs (cMSCs) isolated by a new subfractionation culturing method was evaluated. cMSCs were produced in a GMP facility and intravenously administered to patients who had refractory GVHD to standard treatment resulting after allogeneic HSCT for hematologic malignancies. After administration of a single dose (1x10(6) cells/kg), 11 patients were evaluated for cMSC treatment safety and efficacy. During the trial, nine patients had 85 total adverse events and the rate of serious adverse events was 27.3% (3/11 patients). The only one adverse drug reaction related to cMSC administration was grade 2 myalgia in one patient. Treatment response was observed in four patients: one with acute GVHD (partial response) and three with chronic GVHD. The other chronic patients maintained stable disease during the observation period. This study demonstrates single cMSC infusion to have an acceptable safety profile and promising efficacy, suggesting that we can proceed with the next stage of the clinical trial.
Bone Marrow
;
Drug-Related Side Effects and Adverse Reactions
;
Graft vs Host Disease*
;
Hematologic Neoplasms
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Mesenchymal Stromal Cells*
;
Myalgia
;
Population Characteristics
8.Wnt/β-catenin signal pathway mediated Salidroside induced directional differentiation from mouse mesenchymal stem cells to nerve cells.
Chao GUO ; Run LIU ; Hong-Bin ZHAO ; Guan-Hua QIN
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(3):349-354
OBJECTIVETo explore the molecule mechanism of Salidroside inducing directional differentiation of mouse mesenchymal stem cells (MSCs) into neuronal cells.
METHODSThe mouse multipotent mesenchymal precursor cell line (D1) was taken as the objective. Cultured MSCs were divided into the negative control group (complete culture solution), the positive control group (containing 1 mmol/L β-mercaptoethanol), the Salidroside induced group (20 mg/L Salidroside), and the blocked group (20 ng/ ml DKK1, a special inhibitor of Wnt/β-catenin signal pathway). All cells were inoculated in a 6-well plate (1 x 10(4) cells/cm2) and grouped for 24 h. The expression of p-catenin was detected by fluorescence Immunochemistry in the negative control group, the positive control group, and the Salidroside induced group. The expression of neuron-specific enolase (NSE), beta 3 class III tubulin (β-tubulin III), nuclear receptor related factor 1 (Nurr1), glial fibrillary acidic protein (GFAP) mRNA, Wnt3a, β-catenin, low-density lipoprotein receptor-related protein6 (LRP6), Axin mRNA were detected using reverse transcrip- tion PCR (RT-PCR). The expression of β-catenin and NSE protein were analyzed by Western blot in the negative control group, the positive control group, and the Salidroside induced group. Ca2+ chelating agents (EGTA), L-type Ca2+ channel blocker (Nifedpine), and IP3Ks special inhibitor (LY294002) were used to block Ca2+ signal pathway respectively. The expression of Wnt3a, LRP-6, Axin, glycogen syn- thase kinase (GSK-3), and β-catenin mRNA were detected by RT-PCR. The β-catenin protein expression was analyzed using Western blot.
RESULTSCompared with the positive control group, β-catenin protein was strong positively expressed; the expression of Wnt3a, β-catenin, LRP6, Axin, NSE, β-tubulin III, Nurr1 mRNA, and NSE protein were obviously up-regulated in the Salidroside induced group (P < 0.01). Compared with the positive control group and the Salidroside induced group, β-catenin, NSE, Nurr1, and β-tubulin III mRNA expression decreased; β-catenin and NSE protein expression were also down-regulated in the blocked group (P < 0.01). Compared with the Salidroside induced group, the expression of Wnt3a, LRP-6, β-catenin, and Axin mRNA were down-regulated in the Ca2+ signal blocked group and the salidroside induced group (P < 0.01, P < 0.05).
CONCLUSIONSalidroside affected directional differentia- tion of MSCs into neuronal cells through Wnt/β-catenin and Ca2+ signal pathway.
Animals ; Cell Differentiation ; drug effects ; Glucosides ; pharmacology ; Glycogen Synthase Kinase 3 ; Lipoproteins, LDL ; Low Density Lipoprotein Receptor-Related Protein-6 ; Mesenchymal Stromal Cells ; physiology ; Mice ; Neurons ; Phenols ; pharmacology ; Phosphopyruvate Hydratase ; RNA, Messenger ; Signal Transduction ; Wnt Signaling Pathway ; physiology ; beta Catenin ; metabolism
9.Epimedin C induced mesenchymal stem cells C3H/10T1/2 to differentiate into endothelioid cells in vitro: an experimental study.
Yan ZHAO ; Jian-Li GAO ; Su-Hong CHEN ; Gui-Yuan LU
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(3):343-348
OBJECTIVETo study the endothelioid differentiation effect of Epimedin C on murine embryonic mesenchymal stem cells (C3H/10T1/2).
METHODSC3H/10T1/2 cells were cultivated in vitro. The cytotoxicity of Epimedin C at different concentrations was determined by MTT assay and crystal violet assay. Morphological changes were observed under microscope after treated with Epimendin C. The effect of Epimendin C on the cell cycle distribution was determined by flow cytometry. mRNA expression levels of endothelial markers, such as CD31, CD34, vascular endothelial zinc finger 1 (Vezf1), angiopoietin 1 (Ang1), and angiopoietin 2 (Ang2) were detected by semi-quantitative PCR. Protein expression levels of platelet endothelial adhesive molecule 1 (CD31), ecto-5'-nucleotidase (CD73), endothelial cell specific molecule-1 (ESM-1), and integrin β5 were determined by immunocytochemical (IHC) staining.
RESULTSEpimedin C could not affect the survival rate of C3H/10T1/2 cells at 1-30 μmol/L. Its cell cycle distribution was not significantly changed after treated by 30 μmol/L Epimedin C for 24 h. C3H/10T1/2 cells were differentiated to vascular endothelial cells by Epimedin C treatment, with significant morphological changes (whirlpool-like structure). PCR results indicated that mRNA levels of classic endothelial mark- ers, namely CD34, Vezf1, Ang1, and Ang2 were significantly increased in C3H/10T1/2 cells after treated with Epimedin C for 5 days (P < 0.05, P < 0.01). Protein expression levels of CD31, CD73, and ESM-1 were also positively expressed after treated with Epimedin C for 5 days, showing statistical difference when compared with those of the control group (P < 0.01, P < 0.05).
CONCLUSIONEpimendin C could induce C3H/10T1/2 cells to differentiate into endothelioid cells.
Animals ; Cell Differentiation ; drug effects ; Cell Line ; Cells, Cultured ; Flavonoids ; pharmacology ; therapeutic use ; In Vitro Techniques ; Mesenchymal Stromal Cells ; physiology ; Mice ; RNA, Messenger
10.Icariin Promoted Osteogenic Differentiation of SD Rat Bone Marrow Mesenchymal Stem Cells: an Experimental Study.
Shu-ping FU ; Li YANG ; Hao HONG ; Chen OU ; Rong-hua ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(7):839-846
OBJECTIVETo observe features of Icariin in promoting osteogenic differentiation of SD rat bone marrow mesenchymal stem cells (BMSCs) in vitro.
METHODS(1) SD rats' BMSCs were isolated and purified by mechanically isolated and cultured by whole bone marrow adherent method. Effects of various concentrations Icariin on serum activities of alkaline phosphatase (ALP) were detected using amino antipyrine phenol determination method at day 3, 6, 9, 12, 15, 18, and 21. Calcium nodes of each groups were detected using alizarin red staining. Roles of various concentrations Icariin in promoting osteogenic differentiation of BMSCs were observed. (2) BMSCs were divided into the blank control group, the osteogenic induced group, and the Icariin group (0.5 microg/mL). ALP activities were detected at day 7, 14, and 21 of culture. Meanwhile, ALP positive staining rate and calcium nodes were detected at day 14 and 21 respectively. Additionally, mRNA expressions of Runt-related transcription factor-2 (Runx2) and Osteocalcin were detected at day 7, 14, and 21 by real-time fluorescent quantitative PCR.
RESULTS(1) 0.05-5.0 microg/mL Icariin could significantly elevate serum ALP activities. Of them, 0.2-2.0 microg/mL Icariin significantly increased calcium nodes numbers (P < 0.01). (2) When Icariin promoted osteogenic differentiation of BMSCs, Runx2 mRNA expression levels and ALP activities increased earlier and then decreased, while osteocalcin mRNA expression levels continued to increase (P < 0.01). Compared with the osteogenic induced group, ALP activities and ALP positive staining rate were both elevated after 14 days of Icariin treatment in the Icariin group (P < 0.05, P < 0.01).
CONCLUSIONSIcariin could promote the differentiation of BMSCs to osteoblasts by up-regulating Runx2 mRNA expression levels. It also could promote the mineralization by increasing ALP secretion and Osteocalcin mRNA expression levels, thereby promoting mature of newly generated osteoblasts.
Animals ; Bone Marrow Cells ; Cell Differentiation ; drug effects ; Flavonoids ; pharmacology ; Hematopoietic Stem Cells ; Mesenchymal Stromal Cells ; physiology ; Osteoblasts ; Osteocalcin ; Osteogenesis ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail