1.The roles of habenula and related neural circuits in neuropsychiatric diseases.
Yuxing WU ; Shihong ZHANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2019;48(3):310-317
The habenula is a small and bilateral nucleus above dorsal thalamus, which contains several different types of neurons. The habenula has extensive connections with the forebrain, septum and monoaminergic nuclei in the midbrain and brainstem. Habenula is known as an 'anti-reward' nucleus, which can be activated by aversive stimulus and negative reward prediction errors. Accumulating researchs have implicated that the habenula is involved in several behaviors crucial to survival. Meanwhile, the roles of the habenula in neuropsychiatric diseases have received increasing attention. This review summaries the studies regarding the roles of habenula and the related circuits in neuropathic pain, depression, drug addiction and schizophrenia, and discusses the possibility to use the habenula as a treatment target.
Depressive Disorder
;
Habenula
;
Humans
;
Mental Disorders
;
pathology
;
Mesencephalon
;
Neurons
;
metabolism
;
Reward
2.Metabolic Correlates of Temperament Factors of Personality.
Hyun Soo PARK ; Sang Soo CHO ; Eun Jin YOON ; Seong Ae BANG ; Yu Kyeong KIM ; Sang Eun KIM
Nuclear Medicine and Molecular Imaging 2007;41(4):280-290
PURPOSE: Gender differences in personality are considered to have biological bases. In an attempt to understand the gender differences of personality on neurobiological bases, we conducted correlation analyses between regional brain glucose metabolism and temperament factors of personality in males and females. MATERIALS AND METHODS: Thirty-six healthy right-handed volunteers (18 males, 33.8+/-17.6 y; 18 females, 36.2+/-20.4 y) underwent FDG PET at resting state. Three temperament factors of personality (novelty seeking (NS), harm avoidance (HA), reward dependence (RD)) were assessed using Cloninger's 240-item Temperament and Character Inventory (TCI) within 10 days of FDG PET scan. Correlation between regional glucose metabolism and each temperament factor was tested using SPM2. RESULTS: In males, a significant negative correlation between NS score and glucose metabolism was observed in the bilateral superior temporal gyri, the hippocampus and the insula, while it was found in the bilateral middle frontal gyri, the right superior temporal gyrus and the left cingulate cortex and the putamen in females. A positive HA correlation was found in the right midbrain and the left cingulate gyrus in males, but in the bilateral basal ganglia in females. A negative RD correlation was observed in the right middle frontal and the left middle temporal gyri in males, while the correlation was found in the bilateral middle frontal gyri and the right basal ganglia and the superior temporal gyrus in females. CONCLUSION: These data demonstrate different cortical and subcortical metabolic correlates of temperament factors of personality between males and females. These results may help understand biological substrate of gender differences in personality and susceptibility to neuropsychiatric illnesses.
Basal Ganglia
;
Brain
;
Female
;
Glucose
;
Gyrus Cinguli
;
Hippocampus
;
Humans
;
Male
;
Mesencephalon
;
Metabolism
;
Positron-Emission Tomography
;
Putamen
;
Reward
;
Temperament*
;
Volunteers
3.Metabolic Correlates of Temperament Factors of Personality.
Hyun Soo PARK ; Sang Soo CHO ; Eun Jin YOON ; Seong Ae BANG ; Yu Kyeong KIM ; Sang Eun KIM
Nuclear Medicine and Molecular Imaging 2007;41(4):280-290
PURPOSE: Gender differences in personality are considered to have biological bases. In an attempt to understand the gender differences of personality on neurobiological bases, we conducted correlation analyses between regional brain glucose metabolism and temperament factors of personality in males and females. MATERIALS AND METHODS: Thirty-six healthy right-handed volunteers (18 males, 33.8+/-17.6 y; 18 females, 36.2+/-20.4 y) underwent FDG PET at resting state. Three temperament factors of personality (novelty seeking (NS), harm avoidance (HA), reward dependence (RD)) were assessed using Cloninger's 240-item Temperament and Character Inventory (TCI) within 10 days of FDG PET scan. Correlation between regional glucose metabolism and each temperament factor was tested using SPM2. RESULTS: In males, a significant negative correlation between NS score and glucose metabolism was observed in the bilateral superior temporal gyri, the hippocampus and the insula, while it was found in the bilateral middle frontal gyri, the right superior temporal gyrus and the left cingulate cortex and the putamen in females. A positive HA correlation was found in the right midbrain and the left cingulate gyrus in males, but in the bilateral basal ganglia in females. A negative RD correlation was observed in the right middle frontal and the left middle temporal gyri in males, while the correlation was found in the bilateral middle frontal gyri and the right basal ganglia and the superior temporal gyrus in females. CONCLUSION: These data demonstrate different cortical and subcortical metabolic correlates of temperament factors of personality between males and females. These results may help understand biological substrate of gender differences in personality and susceptibility to neuropsychiatric illnesses.
Basal Ganglia
;
Brain
;
Female
;
Glucose
;
Gyrus Cinguli
;
Hippocampus
;
Humans
;
Male
;
Mesencephalon
;
Metabolism
;
Positron-Emission Tomography
;
Putamen
;
Reward
;
Temperament*
;
Volunteers
4.Homogenous fetal dopaminergic cell transplantation in rat striatum by cell suspension methods.
Sang Sup CHUNG ; Sun Ho KIM ; Woo Ick YANG ; In Joon CHOI ; Won Young LEE ; Jae Gon MOON ; Hyun Sun PARK ; Hyung Sik SHIN ; Dong Suk KIM ; Young Min AHN
Yonsei Medical Journal 1993;34(2):145-151
The transplantation of dopaminergic neurons in the brain has been attempted in experimental animals and humans as the new treatment modality of Parkinson's disease. Before the trial of dopaminergic neuronal transplantation in human, the authors proceeded with the animal experiment of fetal dopaminergic cell transplantation in a rat Parkinson's disease model. The aims of this experiment were to confirm the availability of fetal mesencephalic cells as the donor, to compare the viability of cells according to different cell manipulation methods, and to follow up the functional recovery in the transplanted Parkinson's disease model. As a result, the authors concluded that the simple enzyme digestion method had a better cell survival rate than the multiple enzyme digestion method. Also, the transplanted mesencephalic cells could not only survive in the host animal but also promote functional recovery.
Animal
;
Corpus Striatum/*physiology
;
Dopamine/*metabolism
;
*Fetal Tissue Transplantation
;
Male
;
Mesencephalon/cytology/*embryology/metabolism
;
Neurons/metabolism/*transplantation
;
Parkinson Disease/*surgery
;
Rats
;
Rats, Sprague-Dawley
;
Support, Non-U.S. Gov't
5.Study on repairing injured middle brain by Schwann cells transplantation.
Ye LIN ; Qing-san ZHU ; Fei YIN ; Li GUO
Chinese Journal of Surgery 2004;42(3):187-189
OBJECTIVETo explore the ability of grafted Schwann cells to promote restore of injured neurons in rat.
METHODSSchwann cells labeled by BrdU in vitro transplanted into rat middle brain area prior to injure with electric needle stimulus. Immunohistochemistry and image analyzer were used to investigate the expression of BrdU and GAP-43 as well as quantitative analysis respectively.
RESULTSBrdU positive cells could be identified for up to 8 months and the number increased about 15%, which mainly migrated toward injured ipsilateral cortex. The GAP-43 expression reached its peak one month after transplantation and was significant compared with control group (P < 0.05).
CONCLUSIONThe transplantation of Schwann cells could promote the restoration of injured neurons.
Animals ; Cell Transplantation ; GAP-43 Protein ; analysis ; Immunohistochemistry ; Mesencephalon ; injuries ; metabolism ; surgery ; Rats ; Rats, Wistar ; Schwann Cells ; metabolism ; transplantation ; Time Factors
6.Immunohistochemical Localization of Nerve Growth Factor, Glial Fibrillary Acidic Protein and Ciliary Neurotrophic Factor in Mesencephalon, Rhombencephalon, and Spinal Cord of Developing Mongolian Gerbil.
Il Kwon PARK ; Kyoug Youl LEE ; Chi Won SONG ; Hyo Jung KWON ; Mi Sun PARK ; Mi Young LEE ; Keun Jwa LEE ; Young Gil JEONG ; Chul Ho LEE ; Kwon Soo HA ; Man Hee RHEE ; Kang Yi LEE ; Moo Kang KIM
Journal of Veterinary Science 2002;3(3):239-245
The distribution of the nerve growth factor (NGF), the glial fibrillary acidic protein (GFAP) and the ciliary neurotrohic factor (CNTF) was performed in coronal sections of the mesencephalon, rhombencephalon and spinal cord in the developing Mongolian gerbils. Generally, NGF specifically recognizes neurons with the NGF receptor, whereas GFAP does the glia, and CNTF does the motor neurons. The receptor expression was examined separately in gerbils between embryonic days 15 (E15) and postnatal weeks 3 (PNW 3). The NGF-IR was first observed in the spinal cord at E21, which might be related to the maturation. The GFAP reactivity was peaked at the postnatal days 2 (PND2), while the highest CNTF-reaction was expressed at PNW 2. The GFAP stains were observed in the aqueduct and the spinal cord, which appeared to project laterally at E19. The CNTF was observed only after the birth and found in both the neurons and neuroglia of the substantia nigra, mesencephalon, cerebellum and the spinal cord from PND1 to PNW3. These results suggest that NGF, GFAP and CNTF are important for the development of the neurons and the neuroglia in the central nervous system at the late prenatal and postnatal stages.
Animals
;
Brain Stem/enzymology/*metabolism
;
Ciliary Neurotrophic Factor/*metabolism
;
Embryonic and Fetal Development/physiology
;
Female
;
Gerbillinae/*embryology
;
Glial Fibrillary Acidic Protein/*metabolism
;
Immunohistochemistry/veterinary
;
Mesencephalon/embryology/metabolism
;
Nerve Growth Factor/*metabolism
;
Pregnancy
;
Rhombencephalon/embryology/metabolism
;
Spinal Cord/embryology/*metabolism
7.Expression of GAP-43 in midbrain ventral tegmental area of morphine withdrawal rats.
Liang-ming LUO ; Yu-feng WU ; Wei-cheng NI ; Hua ZHU
Journal of Forensic Medicine 2013;29(5):330-336
OBJECTIVE:
To observe the protein expression of growth associated protein-43 (GAP-43) in midbrain ventral tegmental area in morphine withdrawal rats at different time, and to evaluate the effect of GAP-43 on morphine withdrawal memory.
METHODS:
Rat models of morphine dependent 1 week, 2 weeks and 4 weeks were established by morphine hydrochloride intraperitoneal injection with increasing doses to establish natural withdrawal. The protein expression of GAP-43 in midbrain ventral tegmental area was observed by immunohistochemical staining and the results were analyzed by Image-Pro Plus 5.1 image analysis system.
RESULTS:
With prolongation of dependent time, the expression of GAP-43 was decreased then increased in midbrain ventral tegmental area.
CONCLUSION
GAP-43 could play a role in morphine withdrawal memory in midbrain ventral tegmental area.
Animals
;
Behavior, Animal/drug effects*
;
Disease Models, Animal
;
Female
;
GAP-43 Protein/metabolism*
;
Immunohistochemistry
;
Male
;
Mesencephalon/metabolism*
;
Morphine/adverse effects*
;
Morphine Dependence/metabolism*
;
Naloxone/pharmacology*
;
Rats
;
Rats, Sprague-Dawley
;
Substance Withdrawal Syndrome/metabolism*
;
Time Factors
;
Ventral Tegmental Area/metabolism*
8.Effect of Topiramate on Cerebral Glucose Metabolism.
Eun Yeon JOO ; Woo Suk TAE ; Jee Hyun KIM ; Sun Jung HAN ; Byung Tae KIM ; Seung Bong HONG
Journal of Korean Epilepsy Society 2004;8(2):116-122
PURPOSE: To investigate the effects of topiramate on cerebral glucose metabolism, we performed 18F-fluorodeoxy glucose positron emission tomography (FDG-PET) in patients with new-onset epilepsy. METHODS: Thirteen patients with new-onset epilepsy or without medication after epilepsy diagnosis were included. Pre- and post-drug FDG-PET were performed (before and after topiramate administration) in all subjects (M/F=9/4, 28.2+/-11.4 years). For SPM analysis, paired pre- and linearly transformed post-drug FDG-PETs were spatially normalized into a standard PET template, provided in SPM-99, using a 12-parameter affine and a non-linear transformation. Spatially normalized images were then smoothed by convolution using an isotopic Gaussian kernel with a 14 mm full width at half maximum. The paired t-test was used to compare pre- and post-drug PET images. RESULTS: Mean dose of topiramate at the time of post-drug FDG-PET scanning was 163+/-71 mg. Mean duration of topiramate administration was 169+/-54 days. Responses to topiramate medication were seizure free in 7, reduced seizures in 3, and no changes in 3 patients. Reported adverse events were headache in 2 patients. SPM analysis between post-drug and pre-drug FDG-PET images showed post-drug hypometabolism in the white matters of both parietal and right temporal lobes, and corpus callosum, both thalami, right cingulate gyrus, left midbrain, both superior frontal gyri, left middle frontal gyrus, right inferior- and left superior parietal lobules, and left inferior temporal gyrus (corrected p<0.05). No brain region showed post-drug hypermetabolism. CONCLUSION: Topiramate reduced glucose metabolism more in the corpus callosum, thalamus and white matters, and less in the cerebral cortex.
Brain
;
Cerebral Cortex
;
Corpus Callosum
;
Diagnosis
;
Epilepsy
;
Glucose*
;
Gyrus Cinguli
;
Headache
;
Humans
;
Mesencephalon
;
Metabolism*
;
Positron-Emission Tomography
;
Rabeprazole
;
Seizures
;
Temporal Lobe
;
Thalamus
9.The Statistical Parametric Mapping Analysis between Pre- and Post-Operative FDG-PET Images in Patients with Mesial Temporal Lobe Epilepsy.
Hyun Jung HAN ; Eun Yeon JOO ; Woo Suk TAE ; Jee Hyun KIM ; Sun Jung HAN ; Dae Won SEO ; Seung Chyul HONG ; Munhyang LEE ; Byung Tae KIM ; Seung Bong HONG
Journal of Korean Epilepsy Society 2005;9(1):27-35
BACKGROUND: To investigate postoperative changes in the cerebral glucose metabolism of patients with mesial temporal lobe epilepsy (MTLE), statistical parametric mapping (SPM) analysis was performed on pre- and post-operative 18F-fluorodeoxy glucose positron emission tomographic (FDG-PET) images. METHODS: We included 28 patients with MTLE who had under-gone surgery and had been seizure free postoperatively (16 had left MTLE and 12 right MTLE). All patients showed hippocampal sclerosis by pathology or brain MRI. FDG-PET images of the 12 right TLE patients were reversed to lateralize the epileptogenic zone to the left side in all patients. RESULTS: Application of the paired t-test in SPM to pre- and postoperative FDG-PETs showed that the postoperative glucose metabolism decreased in the caudate nucleus, pulvinar of thalamus, fusiform gyrus, lingual gyrus, and in the posterior region of the insular cortex in the hemisphere ipsilateral to resection, whereas postoperative glucose metabolism increased in the anterior region of the insular cortex, temporal stem white matter, midbrain, inferior precentral gyrus, anterior cingulate gyrus, and supramarginal gyrus in the hemisphere ipsilateral to resection. No significant postsurgical changes of cerebral glucose metabolism occurred in the contralateral hemisphere. Subtraction between pre- and postoperative FDG-PET images in individual patients produced similar findings to the SPM results. CONCLUSION: This study suggests that brain regions showing a postoperative increase in glucose metabolism appear to represent the propagation pathways of ictal and interictal epileptic discharges in MTLE while a postoperative decrease in glucose metabolism may be related to a permanent loss of afferents from resected anterior-mesial temporal structures.
Anterior Temporal Lobectomy
;
Brain
;
Caudate Nucleus
;
Electrons
;
Epilepsy, Temporal Lobe*
;
Glucose
;
Gyrus Cinguli
;
Humans
;
Magnetic Resonance Imaging
;
Mesencephalon
;
Metabolism
;
Pathology
;
Pulvinar
;
Sclerosis
;
Seizures
;
Temporal Lobe*
;
Thalamus
10.The Comparison of Regional Cerebral Glucose Metabolism Using Positron Emission Tomography during Sevoflurane and Propofol Anesthesia in Human.
Yong Bo JEONG ; In Cheol CHOI ; Ja Young JU ; Jae Seung KIM ; Seong Deok KIM
Korean Journal of Anesthesiology 2005;49(3):385-394
BACKGROUND: Recent increases in use of sevoflurane have made active researches on its effects in the cerebral metabolism. However, no specific data on brain glucose metabolism has been reported from human study. We compared the brain glucose metabolism during sevoflurane anesthesia with that of propofol anesthesia using positron emission tomography (PET) in the same human volunteers. METHODS: PET scan was performed two times at intervals of one week in each eight volunteers. One scan was performed in sevoflurane anesthesia, and the other was performed in propofol anesthesia. Each was titrated to the point of unconsciousness. The scan was obtained by the 18fluorodeoxyglucose technique. Relative cerebral glucose metabolic rate (rCMRg) was assessed with statistical parametric mapping. RESULTS: The regions of decreased rCMRg during sevoflurane aneshesia were the visual cortex, posterior parietal association area, primary somatosensory area, and premotor area. During propofol anesthesia the decreased regions were the visual inferotemporal area and prefrontal association area in addition to those area of sevoflurane anesthesia. The increased regions were the partial prefrontal association area, basal ganglia, cingulate, olfactory-limbic cortex, midbrain, and pons during sevoflurane anesthesia, and the primary motor area, insula, thalamus, medulla along with those area of sevoflurane during propofol anesthesia. CONCLUSION: Propofol suppressed the rCMRg of neocortex area more than sevoflurane, and sevoflurane suppressed the rCMRg of paleocortex, telencephalon more than propofol when the unconsciousness level was achieved by anesthesia. Sevoflurane produces different effects on relative brain glucose metabolism with propofol.
Anesthesia*
;
Basal Ganglia
;
Brain
;
Electrons*
;
Glucose*
;
Healthy Volunteers
;
Humans*
;
Mesencephalon
;
Metabolism*
;
Neocortex
;
Pons
;
Positron-Emission Tomography*
;
Propofol*
;
Rabeprazole
;
Telencephalon
;
Thalamus
;
Unconsciousness
;
Visual Cortex
;
Volunteers