1.Immunohistochemical Localization of Nerve Growth Factor, Glial Fibrillary Acidic Protein and Ciliary Neurotrophic Factor in Mesencephalon, Rhombencephalon, and Spinal Cord of Developing Mongolian Gerbil.
Il Kwon PARK ; Kyoug Youl LEE ; Chi Won SONG ; Hyo Jung KWON ; Mi Sun PARK ; Mi Young LEE ; Keun Jwa LEE ; Young Gil JEONG ; Chul Ho LEE ; Kwon Soo HA ; Man Hee RHEE ; Kang Yi LEE ; Moo Kang KIM
Journal of Veterinary Science 2002;3(3):239-245
The distribution of the nerve growth factor (NGF), the glial fibrillary acidic protein (GFAP) and the ciliary neurotrohic factor (CNTF) was performed in coronal sections of the mesencephalon, rhombencephalon and spinal cord in the developing Mongolian gerbils. Generally, NGF specifically recognizes neurons with the NGF receptor, whereas GFAP does the glia, and CNTF does the motor neurons. The receptor expression was examined separately in gerbils between embryonic days 15 (E15) and postnatal weeks 3 (PNW 3). The NGF-IR was first observed in the spinal cord at E21, which might be related to the maturation. The GFAP reactivity was peaked at the postnatal days 2 (PND2), while the highest CNTF-reaction was expressed at PNW 2. The GFAP stains were observed in the aqueduct and the spinal cord, which appeared to project laterally at E19. The CNTF was observed only after the birth and found in both the neurons and neuroglia of the substantia nigra, mesencephalon, cerebellum and the spinal cord from PND1 to PNW3. These results suggest that NGF, GFAP and CNTF are important for the development of the neurons and the neuroglia in the central nervous system at the late prenatal and postnatal stages.
Animals
;
Brain Stem/enzymology/*metabolism
;
Ciliary Neurotrophic Factor/*metabolism
;
Embryonic and Fetal Development/physiology
;
Female
;
Gerbillinae/*embryology
;
Glial Fibrillary Acidic Protein/*metabolism
;
Immunohistochemistry/veterinary
;
Mesencephalon/embryology/metabolism
;
Nerve Growth Factor/*metabolism
;
Pregnancy
;
Rhombencephalon/embryology/metabolism
;
Spinal Cord/embryology/*metabolism
2.Homogenous fetal dopaminergic cell transplantation in rat striatum by cell suspension methods.
Sang Sup CHUNG ; Sun Ho KIM ; Woo Ick YANG ; In Joon CHOI ; Won Young LEE ; Jae Gon MOON ; Hyun Sun PARK ; Hyung Sik SHIN ; Dong Suk KIM ; Young Min AHN
Yonsei Medical Journal 1993;34(2):145-151
The transplantation of dopaminergic neurons in the brain has been attempted in experimental animals and humans as the new treatment modality of Parkinson's disease. Before the trial of dopaminergic neuronal transplantation in human, the authors proceeded with the animal experiment of fetal dopaminergic cell transplantation in a rat Parkinson's disease model. The aims of this experiment were to confirm the availability of fetal mesencephalic cells as the donor, to compare the viability of cells according to different cell manipulation methods, and to follow up the functional recovery in the transplanted Parkinson's disease model. As a result, the authors concluded that the simple enzyme digestion method had a better cell survival rate than the multiple enzyme digestion method. Also, the transplanted mesencephalic cells could not only survive in the host animal but also promote functional recovery.
Animal
;
Corpus Striatum/*physiology
;
Dopamine/*metabolism
;
*Fetal Tissue Transplantation
;
Male
;
Mesencephalon/cytology/*embryology/metabolism
;
Neurons/metabolism/*transplantation
;
Parkinson Disease/*surgery
;
Rats
;
Rats, Sprague-Dawley
;
Support, Non-U.S. Gov't