1.Research advances on the function of skin touch receptor Merkel cells.
Hui Pu YUAN ; Yuan Yuan DING ; Yi Xi ZHENG ; Ya Jun ZHANG ; Xia LIU ; Chen RUI ; Chao Chen WANG ; Ying XIAO
Chinese Journal of Burns 2022;38(9):887-892
The reconstruction of tactile function during the repair of skin damage caused by factors including burns is inseparable from the functional regeneration of tactile receptor Merkel cells. Merkel cells mainly exist in the basal layer of the epidermis and are closely connected with nerves to form Merkel cell-nerve complexes, which play an important role in biological organisms. A large number of studies have shown that Merkel cells conduct precise transmission of mechanical force stimuli through the mechanically gated ion channels PIEZO2, and perform the function of tactile receptors. In this paper, we discussed the characteristics of Merkel cells and analyzed the different subgroups that may possibly exist in this type of cells and their functions, at the same time, we investigated the animal model research of touch-related diseases and the clinical diseases related to touch, revealing the importance of Merkel cell function research.
Animals
;
Ion Channels/metabolism*
;
Mechanotransduction, Cellular/physiology*
;
Merkel Cells/physiology*
;
Skin/metabolism*
;
Touch/physiology*
2.The Nerve-dependency of Merkel Cell Proliferation in Cultured Human Fetal Glabrous Skin.
Dong Kun KIM ; Karen A HOLBROOK
Yonsei Medical Journal 2001;42(3):311-315
Merkel cells are thought to function as slowly adapting mechanoreceptors and are known as targets for sensory nerves. However, the nerve-dependency of Merkel cells remains controversial. In this respect, some investigators have found interregional differences between hairy and glabrous skin and others have shown intraregional differences within denervated rat touch domes. Differences between species have also been reported. This study was performed to determine whether Merkel cells proliferate in vitro in the absence of the systemic factors, blood vessels and the intact nerves in human skin. Suspension organ culture was performed using fetal digits to investigate their in vitro proliferation. Merkel cells and cutaneous nerves were identified using antibodies to cytokeratin 20 and protein gene product 9.5 (PGP 9.5), respectively. Fetal digits of 56-82 day gestational age were cultured in serum free medium in a high O2 (45%) environment. Tissues were harvested before starting culture (D0) and 1,4,7,14, 28d after culture. Merkel cells were observed in the volar pads and dorsal nail matrices at D0. After 28d of suspension organ culture, digits looked healthy structurally and the number of Merkel cells had increased. However, PGP 9.5-immunoreactive nerves were markedly diminished after 1 day of culture and almost disappeared after 4 days. Merkel cell proliferation in vitro suggested that Merkel cell development is probably nerve-independent in human fetal glabrous skin.
Cell Division
;
Female
;
Human
;
Intermediate Filament Proteins/analysis
;
Merkel Cells/*physiology
;
Organ Culture
;
Pregnancy
;
Skin/cytology/*embryology/*innervation
;
Thiolester Hydrolases/analysis