1.Epigallocatechin gallate induces gene demethylation to promote acute myeloid leukemia cell apoptosis by regulating p19-p53-p21 signaling pathway.
Mingcai WU ; Ming JIANG ; Mengya XUE ; Qing LI ; Bing CHENG ; Mengzhu HUANG ; Lei XU ; Yao ZHANG
Journal of Southern Medical University 2020;40(9):1230-1238
OBJECTIVE:
To investigate the mechanism by which epigallocatechin gallate (EGCG) induces gene demethylation and promotes the apoptosis of acute myeloid leukemia KG-1 and THP-1 cell lines.
METHODS:
KG-1 and THP-1 cells treated with 25, 50, 75, 100 or 150 μg/mL EGCG for 48 h were examined for gene methylation using MSP and for cell proliferation using MTT assay. The changes in cell cycle and apoptosis of the two cell lines after treatment with EGCG for 48 h were detected using flow cytometry. The mRNA and protein expressions of DNMT1, CHD5, p19, p53 and p21 in the cells were detected using RT-quantitative PCR and Western blot.
RESULTS:
EGCG dose-dependently reversed hypermethylation of gene and reduced the cell viability in both KG-1 and THP-1 cells ( < 0.05). EGCG treatment caused obvious cell cycle arrest in G1 phase, significantly increased cell apoptosis, downregulated the expression of DNMT1 and upregulated the expressions of CHD5, p19, p53 and p21 in KG-1 and THP-1 cells ( < 0.05).
CONCLUSIONS
EGCG reduces hypermethylation of gene in KG-1 and THP-1 cells by downregulating DNMT1 to restore its expression, which results in upregulated expressions of p19, p53 and p21 and induces cell apoptosis.
2.A biomimetic nanoplatform for customized photothermal therapy of HNSCC evaluated on patient-derived xenograft models.
Qi WU ; Lan CHEN ; Xiaojuan HUANG ; Jiayi LIN ; Jiamin GAO ; Guizhu YANG ; Yaping WU ; Chong WANG ; Xindan KANG ; Yanli YAO ; Yujue WANG ; Mengzhu XUE ; Xin LUAN ; Xin CHEN ; Zhiyuan ZHANG ; Shuyang SUN
International Journal of Oral Science 2023;15(1):9-9
Cancer cell membrane (CCM) derived nanotechnology functionalizes nanoparticles (NPs) to recognize homologous cells, exhibiting translational potential in accurate tumor therapy. However, these nanoplatforms are majorly generated from fixed cell lines and are typically evaluated in cell line-derived subcutaneous-xenografts (CDX), ignoring the tumor heterogeneity and differentiation from inter- and intra- individuals and microenvironments between heterotopic- and orthotopic-tumors, limiting the therapeutic efficiency of such nanoplatforms. Herein, various biomimetic nanoplatforms (CCM-modified gold@Carbon, i.e., Au@C-CCM) were fabricated by coating CCMs of head and neck squamous cell carcinoma (HNSCC) cell lines and patient-derived cells on the surface of Au@C NP. The generated Au@C-CCMs were evaluated on corresponding CDX, tongue orthotopic xenograft (TOX), immune-competent primary and distant tumor models, and patient-derived xenograft (PDX) models. The Au@C-CCM generates a photothermal conversion efficiency up to 44.2% for primary HNSCC therapy and induced immunotherapy to inhibit metastasis via photothermal therapy-induced immunogenic cell death. The homologous CCM endowed the nanoplatforms with optimal targeting properties for the highest therapeutic efficiency, far above those with mismatched CCMs, resulting in distinct tumor ablation and tumor growth inhibition in all four models. This work reinforces the feasibility of biomimetic NPs combining modular designed CMs and functional cores for customized treatment of HNSCC, can be further extended to other malignant tumors therapy.
Animals
;
Humans
;
Squamous Cell Carcinoma of Head and Neck/therapy*
;
Heterografts
;
Photothermal Therapy
;
Biomimetics
;
Disease Models, Animal
;
Head and Neck Neoplasms/therapy*
;
Cell Line, Tumor
;
Tumor Microenvironment
3.Correction To: A biomimetic nanoplatform for customized photothermal therapy of HNSCC evaluated on patient-derived xenograft models.
Qi WU ; Lan CHEN ; Xiaojuan HUANG ; Jiayi LIN ; Jiamin GAO ; Guizhu YANG ; Yaping WU ; Chong WANG ; Xindan KANG ; Yanli YAO ; Yujue WANG ; Mengzhu XUE ; Xin LUAN ; Xin CHEN ; Zhiyuan ZHANG ; Shuyang SUN
International Journal of Oral Science 2023;15(1):12-12