1.Multi-responsive nanotheranostics with enhanced tumor penetration and oxygen self-producing capacities for multimodal synergistic cancer therapy.
Shuangquan GOU ; Nanxi CHEN ; Xiaoai WU ; Menghang ZU ; Shixiong YI ; Binwu YING ; Fangyin DAI ; Bowen KE ; Bo XIAO
Acta Pharmaceutica Sinica B 2022;12(1):406-423
Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin (DOX)-loaded silk fibroin-based nanoparticles (NPs) with surface functionalization by photosensitizer (N770). The obtained nanotheranostics (N770-DOX@NPs) had desirable particle size (157 nm) and negative surface charge (-25 mV). These NPs presented excellent oxygen-generating capacity and responded to a quadruple of stimuli (acidic solution, reactive oxygen species, glutathione, and hyperthermia). Surface functionalization of DOX@NPs with N770 could endow them with active internalization by cancerous cell lines, but not by normal cells. Furthermore, the intracellular NPs were found to be preferentially retained in mitochondria, which were also efficient for near-infrared (NIR) fluorescence imaging, photothermal imaging, and photoacoustic imaging. Meanwhile, DOX could spontaneously accumulate in the nucleus. Importantly, a mouse test group treated with N770-DOX@NPs plus NIR irradiation achieved the best tumor retardation effect among all treatment groups based on tumor-bearing mouse models and a patient-derived xenograft model, demonstrating the unprecedented therapeutic effects of trimodal imaging-guided mitochondrial phototherapy (photothermal therapy and photodynamic therapy) and chemotherapy. Therefore, the present study brings new insight into the exploitation of an easy-to-use, versatile, and robust nanoplatform for programmable targeting, imaging, and applying synergistic therapy to tumors.
2.Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation.
Qiubing CHEN ; Qian LI ; Yuqi LIANG ; Menghang ZU ; Nanxi CHEN ; Brandon S B CANUP ; Liyong LUO ; Chenhui WANG ; Liang ZENG ; Bo XIAO
Acta Pharmaceutica Sinica B 2022;12(2):907-923
Although several artificial nanotherapeutics have been approved for practical treatment of metastatic breast cancer, their inefficient therapeutic outcomes, serious adverse effects, and high cost of mass production remain crucial challenges. Herein, we developed an alternative strategy to specifically trigger apoptosis of breast tumors and inhibit their lung metastasis by using natural nanovehicles from tea flowers (TFENs). These nanovehicles had desirable particle sizes (131 nm), exosome-like morphology, and negative zeta potentials. Furthermore, TFENs were found to contain large amounts of polyphenols, flavonoids, functional proteins, and lipids. Cell experiments revealed that TFENs showed strong cytotoxicities against cancer cells due to the stimulation of reactive oxygen species (ROS) amplification. The increased intracellular ROS amounts could not only trigger mitochondrial damage, but also arrest cell cycle, resulting in the in vitro anti-proliferation, anti-migration, and anti-invasion activities against breast cancer cells. Further mice investigations demonstrated that TFENs after intravenous (i.v.) injection or oral administration could accumulate in breast tumors and lung metastatic sites, inhibit the growth and metastasis of breast cancer, and modulate gut microbiota. This study brings new insights to the green production of natural exosome-like nanoplatform for the inhibition of breast cancer and its lung metastasis via i.v. and oral routes.